
Out of Process Components Page 1

Out-of-Process Components

Jim Fawcett

CSE775 - Distributed Objects

Spring 2011

Out of Process Components Page 2

Out-of-Process Architectural
Diagram

• An out-of-proc component has essentially that same structure as an in-
proc component, except that:

– Outproc is built as a console or windows application, not a dll.

– The component has command line processing that will either:

• Register the component

• Unregister the component

• Run the component server

– The main or winmain:

• creates the class factory

• calls CoRegisterClassObject to put an entry into the running object table (ROT)
telling COM that it is running and stores the factory pointer.

– When a client calls CoCreateInstance COM gets the class factory pointer
from the ROT and creates the component instance.

Out of Process Components Page 3

Architectural diagram here

objbase.h

REGISTRY.H

REGISTRY.CPP

Operation:

 CA()

 ~CA();

 virtual HRESULT QueryInterface(...)

 virtual ULONG AddRef();

 virtual ULONG Release();

 virtual void Sum(int,int,int*);

Attribute:

 long m_cRef;

Class CInsideDCOM

local.cpp

pUnknown

uses QueryInterface(...)

OUTPROC Component

 - Server creates a factory

 - Passes factory pointer to COM

 in call to CoRegisterClassObject

 - COM creates component

 instance when client calls

 CoCreateInstance

 - Client can then call instance

virtual void Fx() = 0;

struct ISum

 virtual Hresult QueryInterface(...) = 0;

 virtual ULONG AddRef() = 0;

 virtual ULONG Release() = 0;

struct IUnknown

CoRegisterClassObject(...)

CoCreateInstance(...)

COM Library pSum

uses Sum(...)

client needs to know about

COM and GUIDS

but does not need to know about

CMPNT

Operation:

 CFactory()

 ~CFactory();

 virtual HRESULT QueryInterface(...);

 virtual ULONG AddRef();

 virtual ULONG Release();

 virtual HRESULT CreateInstance(...);

 virtual HRESULT LockServer(...);

Attribute:

 long m_cRef;

Class CFactory

 virtual HRESULT CreateInstance(...) = 0;

 virtual HRESULT LockServer(...) = 0;

struct IClassFactory

 main()

CLIENT.CPP

local::main()

pClassFactory
pClassFactory

cmpnt_i.c

cmpnt.idl

cmpnt.h

cmpnt_i.p

Out of Process Components Page 4

Structure Chart

• This diagram doesn’t show the register and unregister processing for
simplicity.

• The server is registered by the command:
component /RegServer

• Once the component is registered, when the client calls
CoCreateInstance COM will start the server process if it is not already
running. That causes main to start the class factory and store a
pointer to it in the Running Object Table (ROT).

• COM uses the pointer to create an instance and returns a pointer to the
client.

• The client uses the component through its interface, then calls release
so COM can shut down the server.

Out of Process Components Page 5

client::main

CoInitialize

COM Library

CoCreateInstance

COM Library

CreateProcess

COM Library

CreateInstance

component::CFactory

main

local

CoInitializeEx

COM Library

CFactory

local::CFactory

Release

component::CFactory

InsideDCOM

component::InsideDCOM

QueryInterface

component::InsideDCOM

Release

component::InsideDCOM

AddRef

component::InsideDCOMAddRef

local::CFactory

A

A

marshaled data

Sum

component::CInsideDCOM

OutprocST - Structure Chart

Single-Threaded Apartment

CoUninitialize

COM Library

LockServer

component::CFactory

CoRegisterClassObject

COM Library

CoRevokeClassObject

COM Library

GetMessage

WIN_32

DispatchMessage

WIN_32

~InsideDCOM

component::InsideDCOM

PostQuitMessage

WIN_32

RegisterComponent

local

RegisterServer

Registry

LoadTypeLibEx

COM Library

marshaled data marshaled data

CreateWindowEx

COM Library

Out of Process Components Page 6

Structure chart here
client::main

CoInitialize

COM Library

CoCreateInstance

COM Library

CreateProcess

COM Library

CreateInstance

component::CFactory

main

local

CoInitializeEx

COM Library

CFactory

local::CFactory

Release

component::CFactory

InsideDCOM

component::InsideDCOM

QueryInterface

component::InsideDCOM

Release

component::InsideDCOM

AddRef

component::InsideDCOMAddRef

local::CFactory

A

A

marshaled data
Sum

component::CInsideDCOM

OutprocMT - Structure Chart

Multi-Threaded Apartment

CoUninitialize

COM Library

LockServer

component::CFactory

CoRegisterClassObject

COM Library

CoRevokeClassObject

COM Library

CreateEvent

WIN_32

~InsideDCOM

component::InsideDCOM

SetEvent

WIN_32

RegisterComponent

local

RegisterServer

Registry

LoadTypeLibEx

COM Library

marshaled data
marshaled data

WaitForSingleObject

WIN_32

Out of Process Components Page 7

Activation Diagram

• The diagram on the next page is an elaborated event trace diagram.

• It shows the separate, cooperating actions of the client, COM, and the
Component to:

– Create the component instance

– Use it

– Shut it down

• Note that one new element has been added. Communication between
the client and component must be marshalled, e.g., using interprocess
communication via remote procedure calls (RPCs).

• We will discuss the marshalling process in the next section.

Out of Process Components Page 8

Activation diagram

client calls

CoCreateInstance()

COM searches

registry, finds

LocalServer32 for

CLSID and calls

CreateProcess()

CLSID,

interface

pIX

COM waits for server

to register class

factory

server process is

created and started

with -Embedding on

command line

server creates class

factory, calls

CoRegisterClassObject()

COM calls

class factory

CreateInstance()

COM returns pointer to

requested object

interface

Return from

CoCreateInstance(),

Client uses pointer to

access object's

interface methods

client calls release()

on object's interface

Class Factory creates

instance of object and

returns pointer to COM

pIX

If server resides in

single threaded

apartment the

invocation is

dispatched through

COM originated

messages processed

in DefWindowProc()

which the server

thread processes

send and

receive data

object decrements

reference count

if reference count = 0

server calls

CoRevokeClassObject(),

CoUninitialize() and exits

client COM local server

COM marshalls data

between client and

server using proxy and

stub DLLs

send and

receive data

COM marshalls call

from client to server

using proxy and stub

DLLs

server calls

CoInitialize()

client calls

CoInitialize()

client calls

CoUninitialize()

pIX

Out of Process Components Page 9

Marshaling

• All communication between client and an out-of-process component is
accomplished through marshaling.

• Marshaling is the activity of decomposing data into a byte stream which
is sent over an inter-process communication mechanism, then
recomposing in the receiving process.

• COM’s method of interprocess communication is the Remote Procedure
Call (RPC). The client makes a synchronous call to a proxy in the client
process. The proxy marshals the data and sends it to a stub in the
receiving process where it is processed according to the semantics of
the (remote) procedure. Any results are marshaled back to the client’s
proxy which then creates the fiction of a procedure return.

• It is the job of the Service Control Manager (SCM) to find the server
and instantiate an object and connect the proxy and stub.

Out of Process Components Page 10

Component Activation

Local Machine

CLIENT.EXE

SERVER.DLL

Remote

Object

PROXY.DLL

In-Process

Object

Remote Machine

SERVER.EXE

Out-of-Process

Object

ORPC

ORPC

Service Control Manager (RPCSS.EXE)

COM Library (OLE32.DLL)

SERVER.EXE

Out-of-Process

Object

Service Control Manager (RPCSS.EXE)

COM Library (OLE32.DLL)

Out-of-Process

Object

PROXY.DLL

COM Library (OLE32.DLL)

Out of Process Components Page 11

Marshaling Architecture

Client's Process

Proxy

dll

client

Component's Process

component

stub
interprocess

communication

Out of Process Components Page 12

Marshaling Layers
Type Library Marshaling

- Uses Automation marshaler provided by COM

- Component does not support IMarshal interface

- Component may, but does not have to support IDispatch interface

- Developer provides IDL file with oleautomation or dual tags

- MIDL generates proxy/stub code and a type library file

- Developer does not register ProxyStub dll, but instead makes

 call to LoadTypeLibraryEx or RegTypeLib in server's Register function

Standard Marshaling

- Uses custom marshaling but provided by COM

- Component does not support IMarshal interface

- Proxy and Stub code is generated by MIDL from

 IDL file provided by the developer

- Proxy and Stub dlls are registered by developer

 and loaded by COM

- Proxy builds a vtble with the same layout as the

 component vtble, but with pointers to proxy functions

- When COM marshals an interface pointer the client

 gets a pointer to the Proxy vtble

Custom Marshaling

- Component must support IMarshal interface

- Developer implements IMarshal interface

- IMarshal interface marshals interface pointers only

- Developer must provide for data marshaling using

- sockets, named pipes, memory mapped files, etc.

Interface data types are

restricted to the

automation compatible

types

interface data types are

restricted to the base types

defined in wtypes.idl and

arrays and structures using

the base types

Out of Process Components Page 13

MIDL Compiler

• Most COM components describe their interfaces in IDL rather than
write an IFACE type header for interface declarations and an IFACE
implementation to define GUIDs.

• IDL is compiled by the Microsoft Interface Definition Language (MIDL)
compiler to generate the components shown in the diagram on the
next page.

• If you include the IDL file in your project, you can right click on the IDL
file (in file view) and select the compile item to process your interface
descriptions.

Out of Process Components Page 14

MIDL chart

comp.idl

Interface Definition Language

for comp component

MIDL.EXE

comp.h

C/C++ type

definitions

comp_i.c

GUID

definitions

comp.tlb

type library used by

Visual Basic, C++, Java,

Visual FoxPro, MSTS

comp_p.c

interface marshaler

definitions

dlldata.c

interface marshaler

inprocess server code

#import

comp.tlh

wrapper method declarations

called by smart pointer

comp.tli

wrapper method implementations

called by smart pointer

Out of Process Components Page 15

Threading Models and
Apartments

• COM supports the interaction between client and server even if they
make different assumptions about threading.

– A component that does not want to handle multiple accesses by concurrent
threads specifies that it wishes to operate in a Singe Threaded Apartment
(STA). Any single process can support one or more STAs.

– A component that will handle multiple accesses by concurrent threads, by
synchronizing access to its global and static data, specifies that it wishes to
operate in a Multiple Threaded Apartment (MTA). A process can support
only one MTA.

– An out-of-process component, or client for an in-process component makes
this specification by the arguments it passes to CoInitializeEx.

Out of Process Components Page 16

Creating Apartments

• A single threaded apartment is created on a call to

CoInitialize(NULL)

or
CoInitializeEx(NULL,COINIT_APARTMENT_THREADED)

• A multi-threaded apartment is created on a call to

CoInitializeEx(NULL,COINIT_MULTITHREADED)

• Since an Out-of-Proc component runs in its own process, its
server must call CoInitialize(Ex).

Out of Process Components Page 17

STA Remoting Architecture

• When a client calls into a server residing in an STA the call is serviced
by the server thread.

• A local or remote call is made, on the client’s behalf, by an RPC thread
created by the server’s stub. The RPC thread deposits a request for
service from the desired interface function on a windows message
queue, created when the server was started.

• The server’s thread – the only thread allowed in its STA – retrieves the
message, executes the function, and packages the return data for
transmission back to the client.

• When multiple clients make concurrent calls they are simply enqueued
for service by the single STA thread. Thus the server never has to
handle multiple concurrent threads.

Out of Process Components Page 18

STA Remoting Architecture

RPC Channel

message queue

RPC

Server

Component

Class Factory

Client Proxy

Stub

client thread

COM thread in

client process

COM thread in

component process

component thread

in IDispatch message

component thread

the component

thread continues

processing

windows

messages until it

receives a quit

message posted

by final release

Out of Process Components Page 19

MTA Remoting Architecture

• When a server resides in an MTA it must be prepared to deal with
concurrent access by several threads. It does this by synchronizing
access to all global and static data.

• The RPC channel creates a pool of RPC threads for processing client
requests.

• When a client request arrives, an RPC thread is dispatched to process
the requested interface function, even if another thread is already
active in the MTA.

Out of Process Components Page 20

MTA Remoting Architecture

RPC Channel

RPC thread

cache

Server

Component

Class Factory

Client Proxy

Stub

client thread

COM thread in

client process

RPC thread

RPC thread

main server thread

is blocked waiting

for a termination

event set by the

final release

Out of Process Components Page 21

Remoting Architecture - Proxies

• The next two diagrams show how the RPC channel manages proxies
and stubs for client server interaction.

• On the client side the RPC channel creates a proxy manager that
creates, on demand, a proxy for each interface the client accesses.

• Each proxy has an RPC buffer to use for enqueuing bytes to be sent to
the client, as part of the marshaling process.

• The proxy manager uses COM aggregation to hand the proxy interface
to the client. Thus, the client views all of the interfaces as belonging to
a single entity, and QueryInterface works as expected.

Out of Process Components Page 22

Proxy Manager

Proxy
Manager

client

Iface2 Interface
proxy

IRpcProxyBuffer

Iface2 IRpcChannelBuffer
ORPC

Channel

Iface1 Interface
proxy

IRpcProxyBuffer

Iface1 IRpcChannelBuffer
ORPC

Channel

Iface3 Interface
proxy

IRpcProxyBuffer

Iface3 IRpcChannelBuffer
ORPC

Channel

Out of Process Components Page 23

Remoting Architecture - Stubs

• On the server side a stub manager is created when the server is
activated.

• The stub manager creates a stub, on demand, for each interface
supported by the server.

• The server does not need to view the stub manager as a single entity,
since it will not be calling QueryInterface on the client. So, COM
aggregation of the stubs by the stub manager is not required.

Out of Process Components Page 24

Stub manager

Stub
Manager

component

ORPC
Channel

Iface3 Interface
Stub

IRpcStubBuffer Iface3

ORPC
Channel

Iface2 Interface
Stub

IRpcStubBuffer Iface2

ORPC
Channel

Iface1 Interface

Stub

IRpcStubBuffer Iface1

Out of Process Components Page 25

COM’s Reuse Mechanisms:
Containment

• COM defines component containment which has semantics of
C++ aggregation but can be composed at run time.

• With containment the reusing COM object loads an existing
component and implements part of its own interface by
delegating calls to the contained component.

outer component

IX

IY

inner component

IZ

Out of Process Components Page 26

Implementing Containment

• Containing component class:

– provides an interface matching the contained classes interface and
delegates calls to the inner interface (optional).

– provides an init() function which calls CoCreateInstance(…) on the
contained component.

– Declares a pointer member to hold the pointer to inner interface
returned by CoCreateInstance(…).

– Outer component’s class factory calls init() in CreateInstance(…)
function.

• Client:

– no special provisions.

• Inner Component:

– no special provisions

Out of Process Components Page 27

COM’s Reuse Mechanisms:
Aggregation

• What COM chose to define as aggregation is unfortunately quite
different than C++ aggregation.

• With COM aggregation the aggregating class forwards interface
of the reused existing class to the client by delivering a pointer
to the aggregated interface.

– This complicates implementation of the inner IUnknown since the
usual COM policy for interfaces must still be carried out.

– The result is that, in order to be aggregate-able a component must
implement two IUnknown interfaces

Out of Process Components Page 28

COM Interface Policy

• COM requires that:

– all calls to QueryInterface for a given interface must return the
same pointer value

– the set of interfaces accessible from QueryInterface must be fixed

– if a client queries for an interface through a pointer to that
interface the call must succeed

– if a client using a pointer for one interface successfully queries for a
second interface the client must be able to successfully query
through the second interface pointer for the first interface

– if a client successfully queries for a second interface and, using that
interface pointer successfully queries for a third interface, then a
query using the first interface pointer for the third interface must
also succeed.

Out of Process Components Page 29

COM Interface Policy

A

B

C

IUnknown

A

B

C

IUnknown

A

B

C

IUnknown

Symmetric Reflexive Transitive

Out of Process Components Page 30

COM Aggregation

outer component

QueryInterface

AddRef

Release

Fx

Outer IUnknown

Implementation

inner component

QueryInterface

AddRef

Release

Fy

Delegating IUnknown

implementation

Nondelegating IUnknown

implementation

Out of Process Components Page 31

Implementing (COM)
Aggregation

• Signaling aggregation:
– CoCreateInstance(…) and IClassFactory::CreateInstance(…) both

have a parameter: Iunknown* pUnknownOuter. If this pointer is
null the created object will not be aggregated.

– If An outer component wants to aggregate an inner component it
passes its own IUnknown interface pointer to the inner.

• Implementing IUnknown:
– If an aggregatable component is not being aggregated it uses its

non-delegating IUnknown implementation in the usual way.

– If it is being aggregated it uses its delegating IUnknown to forward
requests for IUnknown or outer interface to the outer component.
Clients never get a pointer to the inner non-delegating IUnknown.
When they ask for IUnknown they get a pointer to the outer
IUknown.

Out of Process Components Page 32

Implementing Aggregation

• The delegating IUnknown forwards QueryInterface, AddRef,
and Release calls to the outer IUnknown.

• When a client requests an inner interface from an outer
interface pointer the outer delegates the query to the inner non-
delegating QueryInterface.

• When CoCreateInstance is called by the outer component it
passes its IUnknown pointer to the inner and gets back a
pointer to the inner IUnknown. This happens in an init()
function called by the outer’s class factory in its CreateInstance
function.

Out of Process Components Page 33

COM Architectural Features

 - Program to Interfaces

 - create objects with class factories
 - Break compilation dependencies

 - implement using dynamic link libraries
 - reuse binary code

 - update without rebuilding

 - use registry to locate components

 - identify components using GUIDS

 - clients need no knowledge of

 where components reside

 - avoid name clashes with other

 components

 - delegate activation to the OS
 - allows components with different

 threading models to interoperate

 - use Remote Procedure Call (RPC)

 communication and marshalling

 between processes and machines

 - support for distributed architectures,

 e.g., from OLE linking and embedding

 to enterprise computing

 - use Interface Definition Language (IDL)

 to describe component's interfaces

 - hides some of the ugly code

 required to handle RPCs

