Jim Fawcett

CSE775 - Distributed Objects
Spring 2012

LINUX PRQCESSES & THREARS

References

= Advanced Programming in the Unix

Environment, Stevens & Rago, Addison Wesley,
Second Edition, 2005

* The Linux Programming Interface, Kerrisk, no
starch press, 2010

= Programming with POSIXThreads, Butenhof,
Addison Wesley, 1997

Linux Processes

= ALinux processis a kernel entity to which
system resources are allocated to execute a
program.

= A Process consists of:

User-space memory containing a program'’s code and
variables and kernel data structures that hold
information about the process

This includes ids associated with the process, virtual
memory tables, table of open file descriptors, signal
handling information, process resource state and
limits, current working directory, ...

Process Structure

= Text segment (sharable, read only)
= Machine language program instructions

= |nitialized data segment

= Global and local static data that are initialized, read when
the program is loaded

= Uninitialized data segment (not stored on disk)

= Uninitialized global and static data, filled with zeros when
loaded

= Stack

= Dynamically allocated stack frames for each program
scope.

"= Heap

Creating a Child Process

* There are two primary ways to create a child
process:

= Call fork() which creates a clone of the parent
process. Usually there is distinct code for parent
and for child. See the Fork example.

o Call one of the exec() functions. These fork() but
then purge the process of the parent code and
data and load another program for execution. See
Execl example.

Linux Threads

» A Linuxthread has:
= A process unique thread id
= Aset of register values
= Astack
A scheduling priority and policy

a

a

A signal mask

= An errno value
Thread specific data

O

Linux Threads

» Headers
= #include <pthread.h>

= Create Thread

= Int pthread_Create(
pthread_t* restrict pTid,
const pthread_attr_t* restrict pAttr,
void* (*pRunfunc)(void*),
void* restrict pArg

Thread Creation

= Thread starts running function pointed to by
pRunfunc with single argument *pArg

This, of course, could be a struct of arguments
= pTid points to thread id supplied by create
= pAttr points to thread attributes structure

Null implies default attributes
= Terminates when *pRunfunc completes.

= No guarantees whether creator or thread run
first.

Thread Creation

» Linux creates a “thread” by cloning the
narent thread’s process. That clone shares
nart of the parent’s execution context like

memory and file descriptors.
= Each thread has its own stack.

= Two threads can share global data and
anything passed to both in arg structures.

Thread Termination

* There are three ways a thread can terminate
without ending its parent process:

= Return from *pRunfunc. Return value is thread'’s
exit code.

= Thread can be canceled by another thread in same
process:

* Int pthread_cancel(pthread_t tid);
- Call pthread_exit(void* returnValue)

Wait for Thread to Complete

* One thread, usually the parent, can wait for
termination of a thread by calling:

= int pthread_join(pthread_t tid, void** returnVal);

The return value is 0 on success, otherwise a failure
code.

That’s All Folks

