
LINUX PROCESSES & THREADS

Jim Fawcett
CSE775 – Distributed Objects
Spring 2012

References

 Advanced Programming in the Unix
Environment, Stevens & Rago, Addison Wesley,
Second Edition, 2005

 The Linux Programming Interface, Kerrisk, no
starch press, 2010

 Programming with POSIX Threads, Butenhof,
Addison Wesley, 1997

Linux Processes

 A Linux process is a kernel entity to which
system resources are allocated to execute a
program.

 A Process consists of:
 User-space memory containing a program’s code and

variables and kernel data structures that hold
information about the process

 This includes ids associated with the process, virtual
memory tables, table of open file descriptors, signal
handling information, process resource state and
limits, current working directory, …

Process Structure

 Text segment (sharable, read only)
 Machine language program instructions

 Initialized data segment
 Global and local static data that are initialized, read when

the program is loaded

 Uninitialized data segment (not stored on disk)
 Uninitialized global and static data, filled with zeros when

loaded

 Stack
 Dynamically allocated stack frames for each program

scope.

 Heap
 Area for dynamic memory allocations made by program.

Creating a Child Process

 There are two primary ways to create a child
process:

 Call fork() which creates a clone of the parent
process. Usually there is distinct code for parent
and for child. See the Fork example.

 Call one of the exec() functions. These fork() but
then purge the process of the parent code and
data and load another program for execution. See
Execl example.

Linux Threads

 A Linux thread has:

 A process unique thread id

 A set of register values

 A stack

 A scheduling priority and policy

 A signal mask

 An errno value

 Thread specific data

Linux Threads

 Headers

 #include <pthread.h>

 Create Thread

 Int pthread_Create(
pthread_t* restrict pTid,
const pthread_attr_t* restrict pAttr,
void* (*pRunfunc)(void*),
void* restrict pArg

);

 Returns 0 if OK, error number on failure

Thread Creation

 Thread starts running function pointed to by
pRunfunc with single argument *pArg
 This, of course, could be a struct of arguments

 pTid points to thread id supplied by create

 pAttr points to thread attributes structure
 Null implies default attributes

 Terminates when *pRunfunc completes.

 No guarantees whether creator or thread run
first.

Thread Creation

 Linux creates a “thread” by cloning the
parent thread’s process. That clone shares
part of the parent’s execution context like
memory and file descriptors.

 Each thread has its own stack.

 Two threads can share global data and
anything passed to both in arg structures.

Thread Termination

 There are three ways a thread can terminate
without ending its parent process:

 Return from *pRunfunc. Return value is thread’s
exit code.

 Thread can be canceled by another thread in same
process:

 Int pthread_cancel(pthread_t tid);

 Call pthread_exit(void* returnValue)

Wait for Thread to Complete

 One thread, usually the parent, can wait for
termination of a thread by calling:

 int pthread_join(pthread_t tid, void** returnVal);

The return value is 0 on success, otherwise a failure
code.

That’s All Folks

