
C# COM
Interoperability

Handling COM Events in C#

Vijayanand Appadurai
with small revisions by Jim Fawcett

CSE775 Distributed Objects
Spring 2005, 2007

Ways of using Connection
Points in Managed Code

 There are three ways of using Connection
points in managed code.

1. Raw Connection Points Approach.

2. Type Library Importer Transformations.

3. .Net Reflection.

 Raw Approach isn’t recommended. It does
not take advantage of built-in event specific
Interop support which we will now discuss.

Type Library Importer
Transformations

 To expose connection points as .Net events, the Type
Library Importer does a lot of extra work.

 Every time the type library importer encounters an
interface listed with the [source] attribute it creates
the following types.

1. SourceInterfaceName_Event.

2. SourceInterfaceName_MethodNameEventHandler.

3. SourceInterfaceName_EventProvider.

4. SourceInterfaceName_SinkHelper.

 These types expose the COM connection points as
standard .Net events which can be viewed using the
object browser.

 Just hook up event handlers for the events we care
about and it works.

Handling Events using
.Net Reflection

 The Type Library Importer Transformation approach
can be used only when we use early binding to the
server.

 To handle server events using late binding we need
to use the .Net Framework API’s directly instead of
using the .Net Framework SDK’s.

 Now we don’t have to add a reference to the server.
Just the server GUID will suffice. We will see how
this works.

Handling COM Events in C#

 Step1: Get the path of the component from the registry.

 Step2: Load the server’s type library, using the server
path obtained in the previous step.

 Step3: Generate a .Net assembly at runtime from the
type library object obtained in Step2.

 Step4: Reflect on the assembly to get the server events
we care about and add event handlers to it at runtime.

Getting Component Path
from Registry

 The component path can be obtained from the
registry using the .Net Registry API’s.

 The path of the component is stored in the
registry under
HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES\
{GUID}\LOCALSERVER.

 Using the GUID, search the registry for the
above key and get the component path.

Load the server’s type
library

 To generate a .Net assembly we need an object that
implements the ITypeLib interface as input.

 To get such an interface we can use the OLE Automation
LoadTypeLibEx method. This can be done using
PInvoke:

 [DllImport("oleaut32.dll", CharSet = CharSet.Unicode, PreserveSig = false)]

private static extern void LoadTypeLibEx(
String strTypeLibName, RegKind regKind,

[MarshalAs(UnmanagedType.Interface)] out Object typeLib
);

 This can be then used in C# as follows.
Object typeLib;

LoadTypeLibEx(path, RegKind.RegKind_None, out typeLib);

Generate a .Net assembly
at runtime

 The process of generating a .Net assembly from a type
library can be done using the TypeLibConverter class in
the System.Runtime.InteropServices namespace.

 The function returns an AssemblyBuilder object which
contains the server’s events, which we can reflect on
during runtime.

 This AssemblyBuilder object is nothing but a wrapper
created at runtime.

 This is similar to the wrapper we create using
TlbImp.exe SDK.

Adding Event Handlers at
runtime

 Reflect on the AssemblyBuilder object at
runtime and get the events exposed by the
server.

 Create a delegate of the eventhandler type
associated with this event at runtime using
System.CreateDelegate method.

 This delegate encapsulates the method to be
invoked when the event is raised by the server.

 Add this EventHandler to the COM object we
created using Activator.CreateInstance.

References

 .Net and COM – The Complete
Interoperability Guide,
Adam Nathan, SAMS, 2002

