+

C# COM
Interoperability

Handling COM Events in C#

Vijayanand Appadurai

with small revisions by Jim Fawcett
CSE775 Distributed Objects
Spring 2005, 2007

Ways of using Connection
Points in Managed Code

+

m There are three ways of using Connection
points in managed code.

1. Raw Connection Points Approach.
2. Type Library Importer Transformations.
3. .Net Reflection.

m Raw Approach isn't recommended. It does
not take advantage of built-in event specific
Interop support which we will now discuss.

Type Library Importer
Transformations

m o expose connection points as .Net events, the Type
Library Importer does a lot of extra work.

m Every time the type library importer encounters an
interface listed with the [source] attribute it creates
the following types.

1. SourcelnterfaceName_Event.
2. SourcelnterfaceName_MethodNameEventHandler.
3. SourcelnterfaceName_EventProvider.
4. SourcelnterfaceName_SinkHelper.
m These types expose the COM connection points as

standard .Net events which can be viewed using the
object browser.

m Just hook up event handlers for the events we care
about and it works.

Handling Events using
.Net Reflection

m The Type Library Importer Transformation approach
can be used only when we use early binding to the
server,

m [o handle server events using late binding we need
to use the .Net Framework API’s directly instead of
using the .Net Framework SDK's.

m Now we don’t have to add a reference to the server.
Just the server GUID will suffice. We will see how
this works.

Handling COM Events In C#
+

m Stepl: Get the path of the component from the registry.

m Step2: Load the server’s type library, using the server
path obtained in the previous step.

m Step3: Generate a .Net assembly at runtime from the
type library object obtained in Step?2.

m Step4: Reflect on the assembly to get the server events
we care about and add event handlers to it at runtime.

Getting Component Path

Jrfrom Registry
m The component path can be obtained from the
registry using the .Net Registry API's.

m The path of the component is stored in the

registry under

HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES\
{GUID}\LOCALSERVER.

m Using the GUID, search the registry for the
above key and get the component path.

+

Load the server’s type
library

To generate a .Net assembly we need an object that
implements the ITypelLib interface as input.

To get such an interface we can use the OLE Automation
LoadTypeLibEx method. This can be done using
PInvoke:

[DllImport("oleaut32.dll", CharSet = CharSet.Unicode, PreserveSig = false)]

private static extern void LoadTypeLibEx(
String strTypeLibName, RegKind regKind,

[MarshalAs(UnmanagedType.Interface)] out Object typeLib
)i

This can be then used in C# as follows.
Object typelib;
LoadTypeLibEx(path, RegKind.RegKind_None, out typeLib);

Generate a .Net assembly
at runtime

+

m The process of generating a .Net assembly from a type
library can be done using the TypeLibConverter class in
the System.Runtime.InteropServices namespace.

m The function returns an AssemblyBuilder object which
contains the server’s events, which we can reflect on
during runtime.

m This AssemblyBuilder object is nothing but a wrapper
created at runtime.

m This is similar to the wrapper we create using
TIbImp.exe SDK.

Adding Event Handlers at
runtime

m Reflect on the AssemblyBuilder object at
runtime and get the events exposed by the

server.
m Create a delegate of the eventhandler type

associated with this event at runtime using

System.CreateDelegate method.

m This delegate encapsulates the method to be
invoked when the event is raised by the server.

m Add this EventHandler to the COM object we
created using Activator.Createlnstance.

References

+

m .Net and COM — The Complete
Interoperability Guide,
Adam Nathan, SAMS, 2002

