
Interception

Jim Fawcett

CSE775 – Distributed Objects

Spring 2004

References

 Essential .Net, Volume 1, The Common Lanaguage Runtime,
Don Box with Chris Sells, Addison-Wesley, 2003

 Aspect-Oriented Programming, Shukla, Fell, Sells, MSDN, March
2002

 Advanced .Net Remoting, Ingo Rammer, Apress, 2002

 Microsoft .Net Remoting, Scott McLean, James Naftel, Kim
Williams, Microsoft Press, 2003

http://www.msdn.microsoft.com/msdnmag/issues/02/03/AOP/

What is Interception?

 Interception is the process of inserting processing:

– When marshaling calls between application domains

• after a client call, but before the method executes

• after method execution, but before the thread of exectution returns to
the client

 This processing, in .Net, is usually specified by an attribute:

– [Serializable]

– [OneWay]

 One use of interception is to attempt to separate solution
domain processing from problem domain processing.

Invoking a Method

stack before call

address of arg3

address of arg2

arg1

this

arg3 value

arg2 value aMethod

stack after call

result

int aMethod(int arg1, ref int arg2, out int arg3)

Interception
happens here

Interception
happens here
also

Invocation Message Model

 The CLR makes method call-
stack transformation
accessible via the IMessage
interface.

 IMethodMessage provides
access to method arguments,
return value, and to the
metadata for the method via
a MethodBase property.

 This provides access to stack
frame contents without
requiring knowledge of the
stack layout.

IMessage

IMethodMessage

IMethodCallMessage IMethodReturnMessage

Creation of Messages

 A transparent proxy, created by the CLR, is used to translate
method calls into messages.

 The transparent proxy is always associated with a real proxy,
responsible for transforming a MethodCallMessage into a
MethodReturnMessage.

The transparent proxy then uses the MethodReturnMessage to
transform the call stack into the result stack configuration.

Stack to Message to Stack

Transparent Proxy Real ProxyInvoke

MethodCallMessage

Method Return MessageMethodReturnMessage

StackBuilder SinkExecuteMessage

target object

aMethod

aMethod

Converts stack to
message

Converts message to
stack

ContextBound Objects

 Deriving a class from System.ContextBoundObject ensures that
every access to an object is through a transparent proxy.

 A context represents services required by the bound object.

 The whole purpose of interception is to automatically provide
pre and post processing of method calls.

 This is done with MessageSinks.

 The context specifies what MessageSink process will be applied
to a context bound object.

Message Sinks

 MessageSinks provide
processing applied to
MethodCall and MethodReturn
messages.

 This is an extensible process.
Any number of MessageSinks
can be inserted in connection
between a client and target
object.

Transparent Proxy

Real Proxy

Invoke

M
e

th
o
d
C

a
llM

e
s
s
a
g
e

M
e

th
o
d
R

e
tu

rn
M

e
s
s
a
g
e

StackBuilder SinkExecuteMessage target objectaMethod

aMethod

MessageSink1

MessageSink2

SyncProcessMessage

SyncProcessMessage

Installing Message Sinks

 The CLR gives context attribute objects the chance to install
context properties as the context is being created.

 It also gives context property objects the opportunity to put
MessageSinks between a proxy and ContextBound object when
the proxy is created.

Afterword

 These notes summarize material provided in Chapter 7 of Don
Box’s Essential .Net, Volume 1.

– In that chapter the author provides a small example that shows
code fragments illustrating how to build the interception apparatus.

 Ingo Rammer in his Advanced .Net Remoting, provides
examples of how channels work and how to build custom
Message Sinks, in chapters 7, 8, and 9.

 Scott McLean, et. al., also provide examples of how to build
interception in chapters 5, 6, and 7.

End of Presentation

