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What is Interception?

 Interception is the process of inserting processing:

– When marshaling calls between application domains

• after a client call, but before the method executes

• after method execution, but before the thread of exectution returns to 
the client

 This processing, in .Net, is usually specified by an attribute:

– [Serializable]

– [OneWay]

 One use of interception is to attempt to separate solution 
domain processing from problem domain processing.



Invoking a Method
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Invocation Message Model

 The CLR makes method call-
stack transformation 
accessible via the IMessage 
interface.

 IMethodMessage provides 
access to method arguments, 
return value, and to the 
metadata for the method via 
a MethodBase property.

 This provides access to stack 
frame contents without 
requiring knowledge of the 
stack layout.
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Creation of Messages

 A transparent proxy, created by the CLR,  is used to translate 
method calls into messages.

 The transparent proxy is always associated with a real proxy, 
responsible for transforming a MethodCallMessage into a 
MethodReturnMessage.

The transparent proxy then uses the MethodReturnMessage to 
transform the call stack into the result stack configuration.



Stack to Message to Stack
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ContextBound Objects

 Deriving a class from System.ContextBoundObject ensures that 
every access to an object is through a transparent proxy.

 A context represents services required by the bound object.

 The whole purpose of interception is to automatically provide 
pre and post processing of method calls.

 This is done with MessageSinks.

 The context specifies what MessageSink process will be applied 
to a context bound object.



Message Sinks

 MessageSinks provide 
processing applied to 
MethodCall and MethodReturn 
messages.

 This is an extensible process.  
Any number of MessageSinks 
can be inserted in connection 
between a client and target 
object.
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Installing Message Sinks

 The CLR gives context attribute objects the chance to install 
context properties as the context is being created.

 It also gives context property objects the opportunity to put 
MessageSinks between a proxy and ContextBound object when 
the proxy is created.



Afterword

 These notes summarize material provided in Chapter 7 of Don 
Box’s Essential .Net, Volume 1.

– In that chapter the author provides a small example that shows 
code fragments illustrating how to build the interception apparatus.

 Ingo Rammer in his Advanced .Net Remoting, provides 
examples of how channels work and how to build custom 
Message Sinks, in chapters 7, 8, and 9.

 Scott McLean, et. al., also provide examples of how to build 
interception in chapters 5, 6, and 7.
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