
.NET Deployment

Matt Smouse

CSE775 – Distributed Objects

Spring 2003

Outline

 Deployment issues

 Configuration files

 Soapsuds and implementation hiding

 Server Deployment with Windows Services

 Server Deployment with IIS

 Client Deployment with IIS

Deployment Issues

 Change in server location

 Does the client hard-code the location and port of remote objects

on the server?

 Uses of the application

 Will this application be used in other ways? For instance, LAN vs

Internet use.

 New/additional remotable objects

 Will we be adding remotable objects after we have built the

application?

 Web deployment

 Implementation hiding

 Do we want to allow the client to disassemble our code?

Configuration Files

 Rather than hard-code the registration of remote
objects and their channels, we can use a
configuration file.

 Using a configuration file allows us to do the
following without recompiling the server or client:
 Change the type of channel that is used

 Add additional remotable objects

 Change the lifetime settings of remotable objects

 Add message sinks or formatters to the server or client

 This functionality is available through the
System.Runtime.Remoting assembly.

Configuration Files (cont)

 A configuration file is an XML document that is
loaded by the server or client.

 Use two different configuration files for the client and
the server.

 On the server, load the configuration file using
RemotingConfiguration.Configure(“MyServer.exe.config”);

 On the client, load the configuration file using
RemotingConfiguration.Configure(“MyClient.exe.config”);

 After loading the configuration file on the client,
simply call new on the remotable object class to
create a proxy.

Configuration Files (cont)

 Content and structure
<configuration>

<system.runtime.remoting>

<application>

<lifetime />

<channels />

<service />

<client />

</application>

</system.runtime.remoting>

</configuration>

Configuration Files (cont)

 Lifetime
 The <lifetime> tag allows you to change the lifetime of your

remotable objects.

 Valid attributes:

 leaseTime – This is the initial lease time that an object will
have to live before it is destroyed.

 sponsorshipTimeout – The time to wait for a sponsor’s reply.

 renewOnCallTime – This is the additional lease time that is
added with each call on the remote object.

 leaseManagerPollTime – Specifies when the object’s current
lease time will be checked.

 Note that these apply to Singleton and Client-Activated
objects only.

Configuration Files (cont)

 Channels
 The <channels> element contains the channels that your

application will be using. We declare channels with the
<channel> tag.

 The <channel> tag specifies the type, port, and other properties
for a particular channel.

 Valid attributes:

 ref – “http” or “tcp”

 displayName – Used for .NET Framework Configuration Tool

 type – if ref is not specified, contains namespace, classname, and
assembly of the channel implementation.

 port – server side port number. Use 0 on the client if you want to get
callbacks from the server.

 name – Unique names to specify multiple channels (use “”)

 priority – Sets priority of using one channel over another.

Configuration Files (cont)

 Channels
 Valid attributes (cont):

 clientConnectionLimit – Number of simultaneous connections
to a particular server (default = 2)

 proxyName – name of the proxy server

 proxyPort – port of the proxy server

 suppressChannelData – specifies whether a channel will add to the
ChannelData that is sent when an object reference is created

 useIpAddress – specifies whether the channel should use IP
addresses in URLs rather than hostname of the server

 listen – setting for activation hooks into listener service

 bindTo – used with computers that have multiple IP addresses

 machineName – overrides useIpAddress

 rejectRemoteRequests (tcp only) – sets local communication only

Configuration Files (cont)

 Providers

 Sink and formatter providers allow the user to specify the

manner in which messages are generated and captured by

the framework for each channel.

 Both the client and server may specify settings for

 The tags <serverProviders></serverProviders> and

<clientProviders></clientProviders> contain the individual

settings for each provider or formatter that you wish to set.

 You can specify one formatter and multiple provider settings.

 You must place the settings in the order shown:

Configuration Files (cont)

 Example channel entry for a server:

<channels>

<channel ref=“http” port=“1234”>

<serverProviders>

<formatter ref=“binary” />

<provider type=“MySinks.Sample, Server” />

</serverProviders>

</channel>

</channels>

Configuration Files (cont)

 Providers (cont)

 Available attributes for formatters and providers:

 ref – “soap”, “binary”, or “wsdl”

 type – if ref is not specified, contains namespace, classname, and

assembly of the sink provider implementation.

 includeVersions (formatter only) – specifies whether version

information is included with object requests

 strictBinding (formatter only) – specifies whether the server must

use an exact type and version for object requests

Configuration Files (cont)
 Service

 The <service> tag is used in the server’s configuration file to
specify the remote objects that will be hosted.

 Contains <wellknown /> and <activated /> entries for server-
activated objects (SAOs) and client-activated objects (CAOs),
respectively.

 Valid attributes for <wellknown />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

 mode – Singleton or SingleCall

 objectUri – Important for IIS hosting (URIs must end in .rem or .soap,
as those extensions can be mapped into the IIS metabase.

 displayName – Optional, used by .NET Framework configuration tool.

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of
the remote object.

Configuration Files (cont)
 Client

 The <client> tag is used in the client’s configuration file to specify

the types of remote objects that it will use.

 Contains attribute for the full URL to the server if using CAOs.

 Contains <wellknown /> and <activated /> entries for server-

activated objects (SAOs) and client-activated objects (CAOs),

respectively.

 Valid attributes for <wellknown />

 url – The full URL to the server’s registered object

 type - Specifies the namespace, classname, and assemblyname of

the remote object.

 displayName – Optional, used by .NET Framework configuration tool

 Valid attributes for <activated />

 type – Specifies the namespace, classname, and assemblyname of

the remote object.

Configuration Files (cont)

 Usage notes:

 Errors in your configuration file cause the framework to

instantiate a local copy of the remote object rather than a

proxy when you call new on it. Check the IsTransparentProxy

method to be sure you are using a remote object.

 When you specify assembly names in your <wellknown /> and

<activated />, don’t include the extension (.dll or .exe).

 You only have to specify the features that you want/need in

your configuration file.

 You don’t have to use the <channel /> setting on the client if

you use the default “http” or “tcp” channels on the server. You

must specify a port on the server.

Soapsuds and Implementation Hiding

 The first thing that you may notice when using .NET
remoting is that the remote object assemblies must
be present on the client.

 We can get away with using interfaces to hide
implementation if we stick with programmatic
remoting configuration.
 Create an assembly that contains interfaces which can be

included on the client machine.

 Create another assembly which contains the remote object
implementations of the interfaces you specified earlier.

 Call Activator.GetObject on the client when you want a
class that implements the interface you specify.

 Example:
In the shared assembly:

public interface IExampleClass {…}

In the assembly on the server:

public class ExampleClass : MarshalByRefObject, IExampleClass {…}

On the client:

IExampleClass iec = (IExampleClass) Activator.GetObject(

typeof(IExampleClass),

“tcp://localhost:1234/ExampleClass”);

Soapsuds and Implementation Hiding (cont)

 Soapsuds is a Visual Studio tool that allows you to

extract metadata from an assembly. The new

assembly contains no implementation detail, just

meta (type) information.

 If our application contains only remote objects and

no customized [serializable] objects, then we can

just run soapsuds on the assembly containing our

remote objects and include the new assembly on

the client.

soapsuds -ia:MyRemoteObjects -nowp -oa:MyRemoteMeta.dll

Soapsuds and Implementation Hiding (cont)

Soapsuds and Implementation Hiding (cont)

 If our application does include custom [serializable]
objects that are passed between domains, then we
can’t just generate a new assembly. We have to use
generated source code that describes the remote
object metadata.

soapsuds -ia:MyRemoteObjects –nowp –gc

 Note that this does not include objects that are
native to the framework, i.e. strings, FileInfo,
DirectoryInfo, etc. If our application only uses these
types of [serializable] objects, then generating a
“meta” assembly will work fine.

Soapsuds and Implementation Hiding (cont)

MyRemoteObjects

MySerializableObjects

Server Client

Run soapsuds

and add generated

source code to client

project.

Project configuration:

Include these

libraries on

the server.

Include this

library on

the client.

Server Deployment with Windows Services

 A .NET windows service inherits from

System.ServiceProcess.ServiceBase

 Place your application specific code in the OnStart(..) method.

 You have to provide an installer class along with your

windows service class.

 Using a windows service allows you to do event logging

 If your service does remoting, you have to place the

configuration file in c:\WINNT\system32

 Install the service using installutil YourServiceName.exe

 After you’ve installed the service, you can start it using the

Microsoft Management Console.

Server Deployment with IIS

 If you are concerned about security, then IIS hosting

is the best way to go.

 Authentication and encryption features are available

through IIS.

 Remote objects are now hosted in IIS; there is no

Main() in the server.

 Updates to the server are easy: just copy over the

remote object assembly and web.config file. IIS will

automatically read the new data.

Server Deployment with IIS

 Procedure:

 Create a class library for your remotable objects

 Build the assembly for the class library

 Create a web.config file for the server

 Create a virtual directory on the host machine

 Set the desired authentication methods for the directory

 Place the web.config file in the virtual directory

 Create a /bin directory in the virtual directory

 Place the remotable object assembly in the virtual directory

 Create a client and configuration file

Client Deployment with IIS

 By placing a WinForm application in a virtual directory, we can

stream it to clients.

 When a URL is selected by a client machine, an HTTP

request is sent to the server, which streams the application

back to the client.

 The application is then stored in the browser cache and also

the .NET download cache.

 The runtime opens the application automatically and also

makes requests for additional assemblies and files as

necessary.

 Be sure to put any remoting configuration files in the virtual

directory with the client application.

End of Presentation

