
Control Models

Jim Fawcett
CSE775 – Distributed Objects
Spring 2007

.Net Control Model 2

Control Types

 Components
– Hosted by toolbox and in Form’s tray

 Controls
– Visible interface hosted by toolbox and on Form’s surface

 UserControls
– Composite control

– Container for controls

– Control for forms

 Derived Controls
– Any of the above, with much functionality provided by a

base component or controls

.Net Control Model 3

What it takes to be a
Component

 Class that implements the IComponent
interface

– Can be hosted in containers

– Reusable,configurable classes

– Don’t have hosted UI, keyboard, and mouse
processing

– Components may have Tooltip or dialog UI, e.g.,
OpenFileDialog and SaveFileDialog.

– Neither of these requires Form real-estate

.Net Control Model 4

What it takes to be a
Component

 When pulled onto a Form, components:

– Join the form’s
System.ComponentModel.Container

– Are given, in their constructor, a reference to
ComponentModel.Container

– If the component exposes properties and events
these are automatically integrated with the Form
Designer’s property window

– A component does this by defining .Net class
properties and delegates

.Net Control Model 5

Standard Components

 BackgroundWorker

 DirectoryEntry

 DirectorySearcher

 ErrorProvider

 EventLog

 FileSystemWatcher

 HelpProvider

 ImageList

 MessageQueue

 PerformanceCounter

 Process

 SerialPort

 ServiceController

 Timer

.Net Control Model 6

Building a Custom
Component
 You can create a component this way:

– Use the project wizard to create a Windows Forms Control library

– Change the base class to:
System::ComponentModel::Component

– Add a constructor:
componentClass(IContainer^ container)
{

container->Add(this);
InitializeComponent();

}

– Change the contents of the InitializeComponent() method to the
line of code:
this->components = gcnew
System::ComponentModel::Container();

.Net Control Model 7

Building a Custom
Component

 An even easier way is to:

– Build a Windows Forms Application

– Right-click on the Form project and select add
new item

– Add Component Class

– A blank design view will appear onto which you
can, but do not have to, pull other components
from the toolbox

.Net Control Model 8

Here is the result of pulling
on the DirectorySearcher

.Net Control Model 9

Adding Components to
the Toolbox

 When you build a project that contains either
components or controls, they will automatically be
added to the toolbox under a category with the
name of the project.

 Now, you can just pull them onto a form.
 So a good strategy for building components and

controls is to:
– start with a test form
– add component and usercontrol items with the new item

wizard
– Build the form project
– Pull the component or control onto the form for testing.

.Net Control Model 10

Adding Properties and
Events

 To add events and properties to a
component you insert the following:
– Event

delegate void TestEvent(String^);

event TestEvent^ test_event;

– Property:
property String^ test_property;

 If you’ve made them public, once you build
the project you will find them in the
component’s property sheet.

.Net Control Model 11

Component Candidates in
Project #3

 Communication component

– Hide all the block handling behind an
adapter that accepts and returns strings
through postMessage and getMessage
functions.

 Filehandler component

– Use the .Net standard components or our
FileInfo and Wintools facilities.

.Net Control Model 12

Controls

 Controls are very similar to
components, but they also:

– Provide a UI that is painted on the
surface of the container

– Respond to user input in the form of
keystrokes and mouse actions

.Net Control Model 13

What it takes to be a
control

 Derives from
System.Windows.Forms.Control

 Control derives from Component, so
you inherit all of the features we’ve
already discussed.

