Programming
with C#

Jim Fawcett
CSE775 - Distributed Objects
Spring 2005

_EI' A =
"% Overview

= Terminology

= Managed Code

= Taking out the Garbage
= Interfaces

.8 Terminology

m CLI: Common Language Infrastructure
s CTS: Common Type System, the .Net types
s Metadata: type information in assembly
s VES: Virtual Execution System - provided by CLR
s IL: Intermediate Language

s CLS: Common Language Specification.

= Core language constructs supported by all .Net
languages.

m CLR is Microsoft's implementation of CLI.

4 Managed Code

m CLR provides services to managed code:
s Garbage collection
s Exception handling
s Type discovery through metadata

s Application domains and contexts
= Fault isolation

= Interception
e Security management
e Attributes

.Net Assembly Structures

Single File Assembly Multiple File Assembly
myProject.exe mylLibrary.dll
. . > Type
Manifest Manifest Metadata
Type Type
Metadata Metadata MSIL code
MSIL code MSIL code
optional
resources
> Type
v Metadata
optional MSIL code
resources

- Taking out the Garbage

= All .Net languages, including C# use
garbage collection

m Garbage collection is a multi-tiered,
non-deterministic background process

= You can’t deallocate resources
immediately when objects go out of
scope.

4 More about Garbage

m C# provides destructors which implement Finalize()
for disposing of unmanaged resources.

s Destructors allow you to tell the garbage collector how
to release unmanaged resources.

= You should Implement
IDisposable::Dispose()

s Users of your class call it's Dispose() to support early
release of unmanaged resources

= Your dispose should call Dispose() on any disposable
managed objects composed by your class and unregister

event handlers.

= Your member functions should call Dispose() on any
local disposable managed objects.

Implementing Dispose()

m Here's the standard way:

public void Dispose ()

{
Dispose (true); // garbage collector calls Dispose(false)

GC.SuppressFinalize (this);

;rivate void Dispose (bool disposing)
{ if ('this.disposed)
{ if (disposing)
{ // call Dispose() on managed resources.

}
// clean up unmanaged resources here.

}
disposed = true; // only call once

4 Minimizing Garbage

= If you have local managed objects in frequently called
methods, consider making them members of your
class instead.

= Using member variable initializers is convenient:
class X
{ private: arrayList col = new ArrayList(),;

but don't if col may be reinitialized to something else
in @ constructor. That immediately generates
garbage.

' v [
Try - Finally

= Managed classes that use unmanaged resources:
handles, database locks, ...
Implement Dispose() and Finalize() to provide for early
and ensure eventual release of these resources.

= But Dispose() may not be called if the using code throws
an exception. To avoid that, catch the exception and use
a finally clause:
try { /* code using disposable x */ }
catch { /* do stuff to process exception */}
finally { x.Dispose(); }

“¥ The using short-cut

m C# provides a short cut for try-finally:
using(x) { /* use x object */ }
is equivalent to:
try { /* use x object */}
finally { x.Dispose(); }

= You can’t have multiple objects in the using
declaration. You will need to nest the using
statements to handle that case. It's
probably easier just to use try-finally if you
need to dispose multiple objects.

Interfaces

m Abstract class provides the root of a class hierarchy.

= Interface provides a contract:
it describes some small functionality that can be
implemented by a class.

m Interfaces can declare all the usual types:
= Methods, properties, indexers, events.
s Interfaces can not declare:

s Constants, fields, operators, instance constructors, destructors,
or types.

= Any static members of any kind.

= Any type that implements an interface must supply all its
members.

¥ Using Interfaces

= Functions that accept and/or return
interfaces can accept or return any
instance of a class that implements
the interface.

m These functions bind to a behavior,
not to a specific class hierarchy.

' v 2
Implementing Interfaces

= .Net languages support only single inheritance of
implementation, but multiple inheritance of interfaces.

s Members declared in an interface are not virtual.

s Derived classes cannot override an interface method
implemented in a base class unless the base declares

the method virtual.

s They can reimplement it by qualifying the method
signature with new.

= This hides the base’s method, which is still accessible to
a client by casting to the interface.

= Hiding is generally not a good idea.

Overrides vs. Event Handlers

m Prefer overriding an event handler over
subscribing to an event delegate.

= If an exception is thrown in an event handler
method the event delegate will not continue
processing any other subscribers.

s Using the override is more efficient.
s There are fewer pieces of code to maintain.
s But make sure you call the base handler.

= When do you subscribe to an event?
s When your base does not supply a handler.

ih

' v a
@ Interception

Component Context

(——— proxy ——® RPCchannel >) interceptor —®(——— stub

client context

AppDomain

The End for now

