CSE687 - Object Oriented Design

 Spring 2011

PRIVATE
Project #2 – XML Metadata Manager

 due Tuesday, March 15
version #2.2
Purpose:
When projects get large, with perhaps hundreds of packages, it becomes difficult to manage their files without some tool support. In the remaining projects we will be assembling a code repository – a place to store and retrieve files and tools that support those activities. This project will focus on an apparatus to intelligently store and retrieve files from the repository. We describe each package held by the repository with an XML file containing file metadata, e.g., data about the files in the package - usually a header file and an implementation file. Our job in this project is to create a system for managing that metadata.

Each metadata file describes, with XML elements, the names of the package files, any paths to any packages on which they depend, and a brief statement of the package’s responsibilities. Thus, the metadata files constitute a virtual dependency graph. We can extract an entire project using only the top-level package as its metadata describes, recursively, all of the other packages in the project, e.g., its dependencies.
Requirements:

Your metadata manager:

1. shall use standard C++
 and the standard library, compile and link from the command line, using Visual Studio 2010’s C++ compiler, as provided in the ECS clusters and operate in the environment provided there
.

2. shall use services of the C++ std::iostream library for all input and output to and from the user’s console and C++ operator new and delete for all dynamic memory management.

3. shall accept from the command line a specification of path and file patterns and accept an option indicating whether the files to be analyzed lie in the directory specified by the path or in the directory tree rooted at that path.

4. shall analyze the dependencies
 between each of the files in the specified file set and build XML metadata files that contain the name of the file’s package and the files and packages on which it depends. For C++ this analysis is fairly simple, discovered by analyzing each of the file’s include statements
.
a. A package is a pair of files with the same name but differing extensions, e.g., .h or .cpp, or a single file that has no matching .h or .cpp sibling. The package name is the name of the file being analyzed.
b. Please design this facility to supply a metadata creator class that has individual methods to add a package name element and dependency elements. The dependencies should consist of file names for the header and implementation files for the package and package names for all other dependencies
.

5. shall support the modification of the XML metadata to include addition dependencies on files not in the set
.

6. shall provide the capability to recursively scan a set of dependent packages, as represented by their metadata
, starting from a package cited on the command line.

7. shall demonstrate that it satisfies these requirements by initially listing all the files in the specified set and then recursively scanning metadata from a top-level package cited on the command line.

8. Your project submission shall be uploaded in a zip file archive, including two batch files named compile.bat and run.bat that compile your project and run it using appropriate command line arguments. Please also include a Visual Studio solution that when run demonstrates you meet these requirements.

Note that there is no requirement to provide a graphical user interface. If you do so, you should also provide a command line interface, as required in #3. Please demonstrate that you meet all of the requirements, stated above, by running your analyzer on its own source code.
� This means, for example that you may not use the .Net managed extensions to C++.

� Visual Studio 2010 is available in all the ECS clusters, and can be downloaded at no cost from the MSDN Academic Alliance.

� You are encouraged to analyze dependencies simply by looking at it’s included files. Thus, you are not required to build a type-based dependency analyzer.

� For this project we will only be analyzing C++ files.

� Please do not include compiler library files in the cited dependencies. You can distinguish these from project files by the encoding of the included statement, e.g., “…” or <…>.

� This feature is intended to support open check-ins which allow adding more files to a check-in without increasing its version number until the check-in is closed. Note that you are not required to prevent overwriting this addition if you re-analyze the file set.

� This means that you scan the metadata, not some in-memory dependency graph.

