
Satisfying Open/Closed Principle

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2003

Statement of Principle

• Software entities (classes, modules, functions) should be open for extension, but
closed for modification.

• Definitions
• Open:

A component is open if it is available for extension:
• add data members and operations through inheritance.

• Create a new policy template argument for a class that accepts policies.

• Closed:
A component is closed if it is available for use by other components but may not, itself,
be changed, e.g., by putting it under configuration management, allowing read only
access.

Application Domain vs. Solution Domain

• As designers, one of our goals should be to build programs with an
Executive layer and a series of libraries of reusable code.
• The executive layer consists of an executive module and, perhaps, a few top

level modules that are all application specific.
• This top layer supports all of the application requirements.

• The remainder of the design consists of reuseable components.
• The reuseable part are solution-side components that carry out basic and often needed

operations.

• This ideal is hard to realize unless we can make the reuseable part
extensible.
• Seldom do we have enough foresight to predict all the needs of the

application.

• Application requirements change while we’re building.

Extensions and Binding

• If our efforts to build reusable components are successful, each new
project will need to build less on the reusable side and can focus on
meeting project requirements.

• That can only work if the reusable components can be extended. We
almost always achieve extendability by providing for application
design-time binding in our library design-time designs.
• Design for application-binding when doing library design.

How do Libraries provide Application Binding?

• Polymorphism
• Build hook classes that provide virtual functions that applications override to

define application specific processing.

• Defind protocols that the library uses and application designers provide by
overriding in a derivation of the protocol class.
• The library may provide derived classes to meet known requirements.

• Application designers add new derived classes driven by increasing knowledge about the
requirements or requirements changes.

• Template policies and traits
• Build functions and classes parameterized by policy classes that allow

application designers to extend by defining new policies, without changing
any of the template class.

• Provide traits to make it easier for application designers to build policy
classes.

Extending Functions

• Closed functions with template parameters can be extended by
defining new compatible classes, used as template parameters.

• Example: trace class member

template <typename T> trace& Add(const T& t)

{

std::ostringstream oss;

oss << t;

*this += ' ';

*this += oss.str();

return *this;

}

The Add function accepts a
reference to an unspecified
type. If the type is convertible
by an ostream then its string
representation will be stored in
the trace string-like object for
later display.

Extending Functions

• If we develop a user defined type that can serialize its state to a
stream:
• A vec3D converting its coordinates to a displayable string

• An html element object serializing to a tagged string

Then this type can be used by trace::Add(const T &t) to save its string

representation for a trace display.

• We could make trace effective for debugging a current project by
providing serialization to string form for objects used in the
implementation.

Extending Classes

• If the library designer supported extensions by providing:
• Protocol classes

• Hook classes

• Template policy parameters and traits

then you simply design plug-in classes to tailor operation of the
library.

• Even when the library does not provide these facilities, you often can
extend existing concrete classes as we did for trace.

Graphics Editor

graphics

object

line circle polygon

display

list

Protocol class

Catalog Prog.

NAV Module

CATALOG Module

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet smaller

fileInfo

catalog::main()

Attribute:

 virtual void dirsProc(const string &dir);

 virtual void fileProc(const fileInfo &fi);

defProc

wildcards

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a dir,

extract file information

define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing

STL containers

store a set of directories and their associated files

Note that

catalog::main()

and navig

actually refer to

a userProc

object through

defProc

pointers

Hook Class

codeDelimiter
Template Policy
Class

The codeDelimiter class is a
functor that defines all
single-character tokens.

An object of this class is used by
toker to customize how tokens
are collected:
• for parsing code
• for parsing XML documents

Deriving from Concrete Classes

std::string

public:

 SetStream(std::ostream* pOs);

 trace(const std::string& funcName, std::ostream& os=std::cout);

 trace& operator=(const char* str);

 template <typename T> trace& Add(const T& t);

 virtual ~trace();

protected:

 std::ostream* pStream;

trace

Even this is not the End of the Story!

• The design patterns class covers about 30 patterns, some of which
are designed to support extension of existing classes.

• The Adapter Pattern is typical of these. It provides a way to provide a
specific required interface for a client from a class or classes that do
not directly support the interface, but do provide a lot of the
required functionality.

• Most of the patterns focus on ways a client can avoid binding to a
concrete class.

Class Adapter

Client Target

Request()

Adapter

Request()

Adaptee

SpecificRequest()

(implementation)

SpecificRequest()

End of Presentation

