
Executable 

Specifications

Jim Fawcett

CSE687 – Object Oriented Design

Copyright © 2009



Software Development Process

• Decomposition in application space

– Understand customer requirements, needs

– Partition into application objects

– Develop user views

– Think about usability, esthetics, extensions, critical issues

• Recomposition in solution space

– Define and develop solution objects

– Aggregate and package

– Test behavior and packaging

– Think about simplicity, maintainability, performance 

2



Architecture and Detailed Design

• System architecture can be loosely associated 

with the application space

– User interactions with the system

– Partitioning into subsystems and application objects

– Possible and planned extensions to delivered product

• Detailed design focuses on the solution space

– Building reusable objects

– Salvaging existing code

– Integration and testing

3



Specifications

• Specifications describe:

– What will be built

– How the system and built parts behave

– Not how it is designed and not how it is implemented

– Specifications are the only basis for testing

• Problem:

– We write specifications for the application space

– We don’t traditionally write specifications for the 

solution space

– So what is our basis for testing solutions?

4



Executable Specifications

• An executable specification is code for a test driver

– Prologue that describes, in comments:

• Designer, platform, and project

• Tested code, e.g., versioned file names

• Test description

– Name, build process

– Expected behavior, and performance

• Test procedure

– Steps the driver will execute and expected results – essentially 

pseudocode 

– A main function and possibly other functions that 

implement the test procedure

5



Implementation

• Interface defines contracts for:

– Logging specification

– Test execution

• Executable Specification Implements interface

– Holds specification text as an embedded resource

– Uses logger and test vector generator to implement 

test

• Each test is packaged as a DLL for test 

execution

6



Incremental System Development

• Architecture

– Define application subsystems and objects

– Write executable test descriptions as a semi-formal specification (only 

spec we will use)

• Detailed Design 

– Define solution side objects

– Write executable test descriptions, e.g., specification of solution

– Write solution-side production code and complete executable 

specifications concurrently

– Test solutions and iterate

• System Test

– Write application-side production code and complete executable 

specifications concurrently

– Test applications and iterate

7



8

Tools

• Test harness for running automated tests

– Test vector generator delivers inputs that drive tests

– Executor loads and executes test libraries (DLLs)

– Logger records results and supports queries

• Test specification parser

– Extracts readable test description for specification document

– Extracts names of classes (with help of static analyzer), objects, 

and descriptions of behavior for design document

– Extracts test description, procedure and logger results for test 

document



Conclusions

• Executable specifications

– Support specification-driven development

• Support for both application and solution domains

– Are compatible with Test-Driven development

– Are compatible with continuous integration

• automated daily tests

• longer cycle regression testing

9


