
Encapsulation in C++

Copyright © Jim Fawcett

Spring 2017



Encapsulation

• Encapsulation Requires that functions, modules and classes:

• Have clearly defined external interfaces

• Hide implementation details

• Encapsulation is all about coupling – coupling happens through 
interfaces.

• Exactly what is an interface?

Encapsulation 2

private data

private 

functions

public functions



Function Interfaces

• Functions have four ways to interact with the external world:

• Parameter list – local coupling:

• Value parameters and const references are input only

• Functions with these parameters don’t have parametric side-affects.

• Non-const reference paramters and pointers are both input and output

• We say that a function with non-const reference parameters has side-affects.  

• Returned items – local coupling:

• Return by value has no after-affects inside the function.

• Return by reference can change the state of an object to which the function belongs.

• Global data – remote coupling:

• Functions that use global data create remote and untraceable side effects.

• Static local data – temporal coupling:

• An invocation affects later invocations.

• The strongest encapsulation is with only pass-by-value or constant reference in and out.

• However, the indirection allowed by non-constant references is just too powerful.  We can’t live 
without it.

• We can, and should, live without global data and we should minimize the use of static local data.

Encapsulation 3



C++ References versus Pointers

• Prefer returning C++ references over pointers.

• References provide access to objects.  You only get to use the object’s interface with a 
reference.

• Pointers provide access to memory.  Their proper use demands that the client 
understand the design of the function, and perhaps the class:

• Does the pointer point to an object or an array of objects?

• Does it point to the heap or some other persistant object?

• Whose responsibility is destruction?

• This is not a manifesto to eliminate all pointer use!

• Pointers do a great job of capturing relationships:

• Arrays, Graphs, trees, lists, repositories

• Their big brothers, iterators, are an essential part of the STL

• It is appropriate to return them from creational functions that act like sophisticated 
new calls. 

Encapsulation 4



Classes

• All the same issues hold for classes, via the member functions they provide.

• Classes also support three accessibility levels: public, protected, and private.

• Public members define the client interface and should be immutable – changing the 
interface breaks client designs.

• Protected members define an interface for derived classes only.  They also should be 
immutable once some of the derived classes are no longer under your control.

• Private members consist of all those helper functions that manage the class’s internal 
state.

• For proper class encapsulation:

• Don’t use public or global data

• Encapsulate member functions well, as discussed in earlier slides.

• Decide carefully which functions will be public, protected, and private.

• Never make member data public.

Encapsulation 5



Role of Constructors and Destructor

• Constructors and destructors

• Objects are created from a class pattern only by calling a constructor.

• Whenever the thread of execution leaves a scope, all objects created in 
that scope are destroyed.  Part of that destruction is the execution of the 
objects’ destructor and the destructors of all its parts.

• A constructor’s job is to allocate whatever resources the class needs on 
startup.

• The destructor returns any allocated resources.

• These actions mean that the class encapsulates its own resource 
management.  That is a very big deal!

Encapsulation 6



Class Relationships

• Composition is the best encapsulated relationship:

• Only member functions of the class have access to the interface of private 
data member objects.

• Only member functions of the class and its derived classes have access to the 
interface of a protected data member object.

• Inheritance gives derived classes access to the protected data 
members of the base class.

• Behavior of a correct base class can be made incorrect by incorrect derived 
class objects.

• Using relationships may badly break encapsulation.

• If you pass an object of a class to a member function of an object of the 
same class, the receiving object has access to all the used object’s private 
and protected state.

• Friend relationships extend this behavior to objects of other classes.

Encapsulation 7



Encapsulation 8

u    U

B

D

CComposition

UUses

Class Relationships

Object Relationships

client

Aggregation

client
friend

Is-A

friendfriend

uses

d    D

b    B

c    C

(ab)uses?

uses

aggregation



Bad Designs

• What makes a design bad?  Robert Martin suggests[1]:

• Rigidity
It is hard to change because every change affects too many other parts of the 
system.

• Fragility
When you make a change, unexpected parts of the system break.

• Immobility
It is hard to reuse a part of the existing software in another application 
because it cannot be disentangled from the current application.

• Many of these “Bad Design” issues stem very directly from poor 
encapsulation.

Encapsulation 9



C++ Class Encapsulation Problem

• The C++ object model has the source text of a user of an object 
responsible for carrying the object’s type information by including a 
header file.

• If class A refers to class B, then A must include B’s header.

• This is the way a C++ compiler does static type checking.

• Remember, in contrast, that C# carries its type information in the assembly 
metadata of the object itself.

• A direct consequence of this fact is that, unless we do something 
special to prevent it, the client is welded to specific versions of the 
objects it uses.

• If the object changes anything in its class declaration, adding a new member 
datum, for example, then the client has to acquire its new header and 
recompile.

Encapsulation 10



Programming to Interfaces

• The something special we do, mentioned on the previous slide, is to:

• Program to an Interface not an Implementation

• Use an Object Factory to create the object.

• Here, interface means more than the public interface of a class.

• An interface is an abstract base class, often a struct actually, containing at 
least one pure virtual function.

• It usually has no constructors and no data.

• It has a destructor, only to qualify it as virtual.

• It often has a static factory function so the client does not have to directly 
instantiate an object of the class it represents.

• This interface shields its clients from all of the implementation details 
of the class it represents.

Encapsulation 11



Encapsulation 12

Public:
  static IElement* CreateElement(const std::string &tag);
  virtual void addAttribute(const std::string &name, const std::string &value) = 0;
  virtual void addBody(const std::string &body) = 0;
  virtual std::string makeElement() = 0;

IElement

Private:
  std::string _tag;
  std::map<std::string, std::string> _attribs;
  std::string _body;

Public:
  Element(const std::string &tag);
  virtual void addAttribute(const std::string &name, const std::string &value);
  virtual void addBody(const std::string &body);
  virtual std::string makeElement();

Element

client

Client Using IElement Interface to Build Tagged Elements

Static creational function is
declared in the interface,
but implemented in
Element.cpp file, where it
sees Element.h class
declaration.

Element class has a
constructor, used by

CreateElement(...) to create
and return a pointer to a

new Element object

Client does not include the
Element.h header file, only the
IElement header, so it has no
compilation dependencies on

Element class.



Fini

• Designing to Interfaces and using factory functions completely 
eliminates the coupling of client to the implementation of its serving 
objects.

Encapsulation 13



End of Presentation


