Jim Fawcett

CSE687 — Object Oriented Design
Spring 2010

RE2FGN HMABY

Design Summary

= Principles
= Liskov Substitution
= Open Closed
= Dependency Inversion
= Interface Segregation
= Least knowledge

= DesignTechniques
= Encapsulate — Single Responsibility
= Parameterize — Separate library design from application design
= Hook —Install base class as parent for application code
= Isolate — provide both interface and object factory

= Design Process

~ Distinquish between application side decomposition and solution side

Liskov Substitution

= Clients typed to use base pointers or
references can use derived pointers or
references with no knowledge of the derived
details.

= Support Liskov Substitution by:
= Providing virtual base functions
= Virtual base destructor
= Avoid use of dynamic_cast
- Don't overload virtual functions or across class

Open Closed Principle

= Reusable software entities should be open for
extension but closed for modification.

= Support Open Closed Principle by
= Using template parameterization.
= Providing Hook base classes

= Example:
= XmlDocument prototype

Dependency Inversion

= Software clients and servers should not depend
on each others details. They should both depend
on the server’s abstraction.

= Support Dependency Inversion by:

Providing interface with protocol language that
supports all server operations.

Provide class factory that instantiates server objects
on the client’s behalf.

= Example:

Parser — uses Rules derived from IRules and created by
Builder

Interface Segregation

= Don’t make clients depend on interface
methods they don't need.

= Support Interface Segregation by:

= Segregating interfaces by functionality
* Each interface supports a specific model

= Classes implement just those interfaces they need
to support their requirements.

Least Knowledge

= Client callers know only the calling interface,
and none of the service implementation.

= Service responders know nothing of the caller
beyond the contents of the request.

» To support Least Knowledge:
= Apply dependency inversion
= Pass messages

Encapsulation

= A class should manage completely its own data
and resources.

= Clients should have no access to its internal
implementation.

= This prevents clients from putting class instance into
invalid state.
= Enforce Encapsulation with:

= Private access control of all private member functions
and data.

- Expose only encapsulated parts.

Parameterize

= Distinguish between application design and
library design.

= Parameterize reusable library classes with class
and member template arguments.

= Make library code more flexible be including
template functions that use compiler type
inference to accept a variety of argument types.

= Example:
- Tracer class from MT3Qa and MT3Qab, Sp2o10

Hook

= |nstall base class as hook for application code

= Hook provides a base protocol used by a library
class.

= Applications derive from the hook and register
classes with the hook provider to support
application operations.

= Example:
= Navigator class in Filelnfo folder

Isolate

* Build components that can be composed to
build large complex systems

= Components support modifying part of the
system without rebuilding unmodified parts.

= Support Isolation:
= Use dependency inversion
= Package as a Dynamic Link Library (DLL)

= Example:
+ DLLProtocolDemo in class code folder

Design Process

= Distinguish between Application and Solution
side development:

Application side development decomposes
project requirements into a set of application
specific classes that model the application
entities.

Solution side development recomposes the
project with reusable classes that support the
application processing.

We care about different things on each side.

The End

