
DESIGN SUMMARY

Jim Fawcett
CSE687 – Object Oriented Design
Spring 2010

Design Summary
 Principles

 Liskov Substitution

 Open Closed

 Dependency Inversion

 Interface Segregation

 Least knowledge

 Design Techniques

 Encapsulate – Single Responsibility

 Parameterize – Separate library design from application design

 Hook – Install base class as parent for application code

 Isolate – provide both interface and object factory

 Design Process

 Distinguish between application side decomposition and solution side
re-composition

Liskov Substitution

 Clients typed to use base pointers or
references can use derived pointers or
references with no knowledge of the derived
details.

 Support Liskov Substitution by:

 Providing virtual base functions

 Virtual base destructor

 Avoid use of dynamic_cast

 Don’t overload virtual functions or across class
scopes

Open Closed Principle

 Reusable software entities should be open for
extension but closed for modification.

 Support Open Closed Principle by

 Using template parameterization.

 Providing Hook base classes

 Example:

 XmlDocument prototype

Dependency Inversion

 Software clients and servers should not depend
on each others details. They should both depend
on the server’s abstraction.

 Support Dependency Inversion by:

 Providing interface with protocol language that
supports all server operations.

 Provide class factory that instantiates server objects
on the client’s behalf.

 Example:

 Parser – uses Rules derived from IRules and created by
Builder

Interface Segregation

 Don’t make clients depend on interface
methods they don’t need.

 Support Interface Segregation by:

 Segregating interfaces by functionality

 Each interface supports a specific model

 Classes implement just those interfaces they need
to support their requirements.

Least Knowledge

 Client callers know only the calling interface,
and none of the service implementation.

 Service responders know nothing of the caller
beyond the contents of the request.

 To support Least Knowledge:

 Apply dependency inversion

 Pass messages

Encapsulation

 A class should manage completely its own data
and resources.

 Clients should have no access to its internal
implementation.

 This prevents clients from putting class instance into
invalid state.

 Enforce Encapsulation with:

 Private access control of all private member functions
and data.

 Expose only encapsulated parts.

 Use no global data.

Parameterize

 Distinguish between application design and
library design.

 Parameterize reusable library classes with class
and member template arguments.

 Make library code more flexible be including
template functions that use compiler type
inference to accept a variety of argument types.

 Example:

 Tracer class from MT3Q1 and MT3Q1b, Sp2010

Hook

 Install base class as hook for application code

 Hook provides a base protocol used by a library
class.

 Applications derive from the hook and register
classes with the hook provider to support
application operations.

 Example:

 Navigator class in FileInfo folder

Isolate

 Build components that can be composed to
build large complex systems

 Components support modifying part of the
system without rebuilding unmodified parts.

 Support Isolation:

 Use dependency inversion

 Package as a Dynamic Link Library (DLL)

 Example:

 DLLProtocolDemo in class code folder

Design Process

 Distinguish between Application and Solution
side development:

 Application side development decomposes
project requirements into a set of application
specific classes that model the application
entities.

 Solution side development recomposes the
project with reusable classes that support the
application processing.

 We care about different things on each side.

The End

