Design Guidelines

Jim Fawcett
Spring 2015

Excerpts from and addendums to:
“Enough Rope to Shoot Yourself in the Foot”,
Allen Holub, McGraw-Hill, 1995



Prime Directive

* No surprises

* A component, e.g., a package or class should act the way it looks like it
should act.

* The interface should describe what it does in a way that any competent
developer can understand.

* Maximize Cohesion

* Things that are grouped together should be related in function and be
focused on a single objective.

* Minimize Coupling
 When a component changes, everything it’s coupled to may need to change.
* Try to couple only to interface, not implementation.

* Try to minimize “assumption” coupling and “need to know” coupling as well
as data coupling.



Decide in Haste
Repent at Leisure



Kiss Principle

* Keep It Small and Simple
* Don’t solve problems that don’t yet exist.
Solve the specific problem, not the general case
* but don’t make it needlessly inflexible either
Keep the door open for extension through composition and inheritance

Use polymorphism to encapsulate “need to know” in specific derived classes,
allowing clients to be blissfully ignorant, knowing only the base class protocol.
Design function code so that it:

* fits on a single page

* has cyclomatic complexity well below 10
Keep a package small enough that its structure chart fits on a single page



Separate Interface from Implementation

* Use encapsulation to force clients to program to your interface, not
your implementation.

* Hide any complex design details inside your implementation
* Make your interface simple and as small as is practical.

* Don’t return non-constant pointers in public class interfaces:
* makes clients need to know your implementation
 Creational functions are an exception to this rule

* For classes, use private or protected keywords:
» qualify all data as private or protected

 gualify as private or protected any methods that are complex or dangerous
for client use

* Declare and implement global functions and classes that are not

intended for client use in the implementation file (don’t declare in
header).



Decompose into Smaller Tasks

* Break a complex operation into smaller simpler pieces.

* if you can’t say it well in English (Hindi, Mandarin, ...)
you can’t say it well in C++

* The act of writing out a description of what a program does, and what each
component does, is a critical step in the thinking process, even if the result is
just one or two pages.

* If you can’t write it clearly then you probably haven’t fully thought out either
the problem or its solution.

 When you’re done, you have a specification - the only reasonable basis for
testing.

* Design is a decomposition process in the application domain.
* Implementation is a re-composition process in the solution domain.



Small is Beautiful

* Large tasks are unmanageable unless they are broken down into
small cohesive subtasks.

* We emphasize use of packages to compose a large program.

* Sometimes large tasks are best accomplished by a collection of small
modular programs that use a common representation:

e executing tasks can be combined in flexible ways
 use the right tool for each specific job
 use parts of the collection in ways the designer never thought of

* new tools are easily added as the tasks and goals evolve
* UNIX tool set
* control system computer aided design and analysis

* new uses often are found if the tools are flexible and easy to use



User Interface Should be Transparent

* Don’t let easy to learn translate into ackward to use.

* Interfaces shouldn't look like computers, they should look like
solutions to a task.

* The fastest editor | ever used was the RT11 TECO editor.
* |t was a line editor, not based on a GUI
* It was brutally hard to learn because it used control keys for all commands

* Once you learned it, NOTHING interrupted your typing. You didn’t have to
stop and grab a mouse every third sentence.

» After a few months of use it became invisible. There was nothing conscious
between you and the words flowing out on the screen.

* Measure productivity in the number of keystrokes it takes to
complete a task.



Read Code

* Read a lot of code.

* You learn by seeing how others write code. Look at as many samples of good
code as you can.

* Look critically at your own code.
* Read several of the better trade journals, e.g., C++ report, C/C++ User’s
Journal, IEEE Computer Magazine, IEEE Software Magazine.

e Write a lot of code.

* When you’re starting a big job, write small prototypes to try out your ideas

and be prepared to throw them away or rebuild them before launching the
final construction.

* Use an editor’s red pencil on your code. Strike out unnecessary code,
simplify, reword, repartition, until you’re reasonably satisfied.

* Be prepared to throw the first one away.



Write for Maintenance

* The maintenance programmer is you!

* Any software that is useful is written once, but read many times.

* alot less effort is expended over the lifetime of the program if the designer
takes the time to document, design, and implement carefully

* You will spend far more time reading your code than writing it.

* as you build a package, the first functions built are re-read many times as you
build later functions that depend on them.

* careful unit test of a package will probably take more time than its initial
construction but save a lot of debugging time downstream.

* Others will read your code to understand when, where, and how to
use it.



Performance is very Important, But...

* Less important than correctness:
* no point in generating errors very quickly

* Less important than robustness:
* no one will trust your code if it crashes often

* Less important than maintainability:

* as soon as a program is put into service, if it’s useful, users want more
functionality.

* adding new features to unmaintainable code takes us back to the first two
points
* Less important than reusability:

* we won’t be in business very long if we're not as productive as our
competitors.

* in a labor intensive business like software development, that means reuse



Formatting and Documentation

» Software should be self-describing:

* Unlike most other engineering disciplines, software has the ability, if well
written, to capture, store, and disclose on demand, the technology used for
its construction.

* if you use specialized algorithms or technology place citations to references
so others can understand how your code works.

* Uncommented code has no value:
* uncommented code is unmaintainable
* manual and maintenance information should accompany every package

» most functions should have a (brief) prologue - perhaps only a single line -
and comments only to describe any subtle code.



Documentation Style
* Let code describe that which code describes best.

* Reduce clutter:
* make comments as brief as possible
* don’t put descriptive comments in class declarations, save them for
member function definitions

* don’t put inline functions inside class declarations.

* put very simple functions (one or two lines) in the header file just after their class
declaration and use the inline keyword

* Put all the rest in implementation file unless they are templatized. Templatized
functions you put in the header file without inline keyword.



Diagrams

e Use diagrams in requirements and design documents:

» data flow diagrams to describe the basic abstractions flows
class diagrams to describe the static logical structure
event trace and activity diagrams to describe dynamic behavior

structure charts to show calling relationships
* always provide one per module if there is significant function layering

data structure diagrams show the organization of your data

* Words are much less effective without diagrams.

* A diagram may be worth a thousand words, but only if it is
accompanied by a paragraph or two of discussion.



Comments

* Don’t comment the obvious.

* Do put comments where they are needed:
* Once per package:

* Manual Page
- Briefly state purpose, operation, and public interface.

* Maintenance Page

- Briefly list maintenance history and state build process including file
dependencies

* Once per file:

» provide prologue: state name of file, brief phrase describing contents, state language,
platform, application, and author

* Once per function:
* state action
* discuss inputs and outputs only if type and format are not obvious
* put brief comments in code only if semantics are not obvious



White Space is Important

* Show scope level with indentation.

* Set editor to replace tabs with spaces
e you want tabs to be three or four spaces

 every printer on earth will make them eight spaces unless it is programmed
to do otherwise

* Use page breaks between functions that would otherwise be split
across pages:

* if your editor does not support page breaks, e.g., VC++, you can
create one from the command line by copying a AL from the key-board to a
file:
copy con >ff
ANLAZ
Then load the ff file into the editor, copy its contents, and paste it, inside a
comment, wherever you need it.



Names are Important

* Well chosen names make code nearly self documenting.

* names should be common words, describing what the file, class, function,
argument, or variable does.

* use one character names only for indices declared, defined, and used locally
* use names just long enough to be descriptive.

* use a consistent style of separation, e.g.:
severalWordName vs. several_word _name

 use aliases and typedefs sparingly

* if typedefs are exported as part of the public interface, then describe them in the user
documentation included in the module.

* avoid routinely redefining standard types



Data Types are Important

* Don’t use global data except for constants that should be universally
known throughout a package.
 global names shared between components destroy their reusability
* non-constant global data makes code maintenance very difficult

* Don’t return non-constant pointers as part of a public interface

* they give access to memory, not objects
* clients have to understand your design to use them properly

* It is acceptable to return a reference to a well-designed object:
 the reference provides access to object only through its interface

* if you do, the object type referred to should be described in the
documentation of your user interface

* Minimize use of static data and try not to use global data at all.
* both cause problems in recursive and multi-threaded code



Minimize Dependencies

* Don’t make unnecessary dependencies

* only include header files that are needed in the file where included
* program to abstract interfaces wherever that makes sense
* that minimizes compile-time dependencies and need-to-know
* never declare using namespace statements in header files
* that declares the using statement in any client’s code that includes your header file
* try very hard not to require preconditions for clients to use your code

* when you have to, make sure the conditions are documented as part of your user
interface

* silent assumptions by one component about the behavior of another component cause
a lot of grief during integration and maintenance of your code



Handling Errors

e Test routines should not be interactive.
* a non-interactive test routine can be exhaustive
* users providing inputs will not be nearly as complete

* Every package should have a test stub to implement construction
tests.

* An error message should help a user fix the error.
* Don’t display error messages if your code can recover.

* It is often very useful to provide error trace functions that are easily
adapted to different environments:
 use synchronization of output streams in multi-threaded code
* use message boxes in GUI applications
 use streams which can be standard 1/O or logging files

* Always flush the output stream if more than one thread share the
same stream.



Handling Pointers

* Always initialize a pointer close to its declaration:
* avoids use of a pointer you assumed was initialized but wasn’t

e If a function you use has an argument that points to a result
you must know:
* has the function allocated storage or do you?
* is the storage heap memory? If so you must deallocate.

* if you supply the content for that output, is the allocated storage large
enough?
* strcat, strcpy, strdup are very common sources of pointer errors

* Don’t pass around non-const pointers:

* that forces clients to know your design:
* is the pointer initialized?
e what is its valid range?
* does the client call free or delete on that pointer?



Handling Pointers Again

* Be careful incrementing pointers into an array. Incrementing and
assignment statements are valid only from the first element to one
past the last element:

int array[SIZE];
int *p = array+SIZE; // ok, can go one past end
while(--p >= array) // may not work, language

// doesn’t support going below
// base address



Architecting and Designing in C++

* Use diagrams to think about classes and class relationships before
you write code:
e UML class diagrams show class relationships
* structure charts show complex method layering
* event trace diagrams document evolution of program messages and events

* Use data flow diagrams to work out partitioning strategies.

* Use diagrams to think about data structures.



Class Structure

* Choose composition over derivation for reuse.

e Use inheritance and polymorphism to define a protocol language:

* clients of the class hierarchy need only know the protocol, not the derived
class details

* use protocol language to build reusable components that need not know any
application details

 use protocol to provide a receptacle for any of a set of components which
may be extended at some later time

* Do not provide public access to private data.

* Don’t put function bodies in class declarations:
* put inline definitions and template definitions after class declaration



Avoiding Pitfalls

* Return by value objects that don’t exist before a function call.
* Pass and return by reference when you can.
* Prefer const references as function inputs.

* Constructors with arguments should always use initialization
sequences.

* Derived class constructors should always explicitly initialize their base classes
and member objects.

* Derived class copy constructors must use an initialization sequence to call
their base copy constructor.

* Assignment in a derived class should use the base’ assignment
operation to get the base part assigned.

* Don’t call virtual functions in a constructor for the same class.
* Make destructors virtual for any class that may serve as a base.



Overloading Operators

* Define:
* operator+, operator-, operator*, and operator/

in terms of :
» operator+=, operator-=, operator*=, and operator/=

* Remember the binary operator model:
 operators as class members: x@y < x.operator@(y)
» operators as global functions: x@Y < operator(x,y)



Use the Whole Language

* Understand all the major features of the language:
* classes
* composition
* inheritance

polymorphism

templates

* exceptions

 standard library

 Study Design Patterns to see smart, tested ways of using OOD.
* “Design Patterns”, Gamma et. al., Addison-Wesley, 1995

* Then use the appropriate tool for the job.

* not every design needs all of the language or sophisticated patterns, but
every feature and pattern has problems that they solve better than other
know ways.



Look at Other Languages

e Other OOD languages:
e C# and Java: designed to be used in a distributed environment
* Eiffel: provides direct support for Design-by-Contract

* Scripting languages:
* JavaScript, VBScript:
* languages embeddable in html, making active web pages
* Perl, Tcl, Python, Ruby:
» designed to be integration languages
* Functional languages:
* ml, lisp, mathematica:
* have been used for prototyping and knowledge representation
 Declarative languages:

* Prolog, Leda
 used for expert systems, theorem proving



SW Development is a Service Industry

* Ask people what they want, then do what they tell you.
* What’s the point of building a program no one wants?

* Designers need to talk with the end users.
* Big Government job?
* There is always on-site installation and customer maintenance.

* Commercial shrink-wrap product?
* talk to users of the previous version

* Embedded software?
 talk to the production engineers and installers on the factory floor

* Make an end-user part of the development team.

* If you're designing development tools, use them yourself, while you
are developing them.



End of Presentation



