
Grammar Issues for CSE687 Project #21

In Project #2 – Hierarchy, you are required to discover the class relationships in
and among classes in a set of C++ source code files. Specifically, you must find
these relationships:

1. Inheritance:
A class may inherit from another class, a struct, or an interface, using the
syntax:

 class myClass : [public | protected | private] yourClass { … }

which says that myClass inherits from (is derived from) yourClass.

2. Composition:
One class or struct, say A, is composed with another, say B, when B holds
an instance or a reference to A as a data member, and the lifetime of A is
the same as the lifetime of B. That happens only when A is initialized or
constructed in the constructor of B.

 class B // case #1 – A is initialized in B’s constructor
 {
 private:
 A myA;
 public:

 B(args) [: myA(a  args)] { … }
 // will use default initialization if option is not present
 }

 class B // case #2 – A is constructed in B’s constructor call
 {
 private:
 A[* | &] myA;
 public:

 B(args) { myA = [|*]new A(a  args); }

 ~B() { delete [|&] myA; } // [option]
 :
 }

1 The class text (C++ Programming Language, Stroustrup) has quite complete descriptions of the language grammar
spread over many chapters. A very nice condensation with syntax diagrams can be found in:
C++ Complete : A Reference and Tutorial to the Proposed C++ Standard, Anthony Rudd, Wiley, 1994.
Note that you need much, much, much less than a complete specification for the language grammar, as described in this
note.

3. Aggregation:
One class or struct, say A, is aggregated with another, say B, when either
B holds a reference to A which is initialized in a non-constructor member
function, so that its lifetime is less than the lifetime of the aggregator, B,
or when it is constructed as a local data in a member function of B.

 class B // case #1 – lifetime of A starts later than B
 {
 private:
 A* pA;
 public:
 B() { … }
 someFunction() { pA = new A(); … }
 // correct design will provide for deletion at some point
 }

 class B // case #2 – lifetime of A is shorter than B on both ends
 {
 public:
 B() { … }
 someFunction() { A myA; … // A destroyed at end of func. }
 :
 }

4. Uses:
A using relationship occurs when one class, Say A, is accessed by another,
say B, but B does not construct the instance of A.

 class B // case #1 – B holds onto reference to A for use later
 {
 private:
 A* pA;
 public:
 B() { … }
 void anotherFunction(A* pYourA)
 {
 pA = pYourA;
 // use YourA instance in some way here or elsewhere
 }
 }

5. Note about declarations:
In items #2 and #3 you have to be able to detect declarations of an
instance of some type. That is, you want to know that a declaration
occurred and what type was declared.

That can be messy since declarations can use modifiers like const, static,
volatile, … , the prefix operator * to indicate a pointer, and the postfix
operators [] and = used for defining an initialization sequence.

You can simplify that by throwing away all modifiers (look up the C++
keywords and decide which may be declaration modifiers), the * prefix if
it occurs, and the postfix [] and the postfix = and everything that follows
it. You will then be left with two tokens, a Type and its instance identifier.

