
Common Coding Problems

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2014

References

• Some of this material is based on the text:
• C++ Gotchas in Coding and Design, Stephen Dewhurst, Addison-Wesley, 2003

Comments

• For each package provide Manual Page and Maintenance Page

• For each prototype file provide a brief prologue with title and author

• Don’t comment the obvious

• Prefer names with meaning over comments

• Don’t void aFunction(string, string) // some inadequate comment

• Do: void CopyAnalysisResults(string destination, string source)

• Comments aren’t bad, but they have to be maintained.

• Better to write code so that a lot of comments are not necessary

Magic Numbers

• Prefer named, initialized constants over literal numbers:

• Don’t: char buffer[100]; … int x = 100; …

• Do: const unsigned int BufSize = 100;
char buffer[BufSize];

If you need to change the buffer size should you also change the
value of x? Would some maintainer know? Will you know in two
weeks?

• Don’t: readflag = 0; writeflag = 1; openflag = 2; …

• Do: enum flags { read, write, open, … }

Global Variables

• Globals are almost never needed.
• std::ostream::cout is a predefined global
• sout from threads module is a predefined global
• These are about the only acceptable uses, except when forced by a framework, e.g.,

MFC or COM.

• You can make shared data easily available like this:

class share
{
public:

vector<std::string> getNames() { return _names; }
void addName(std::string) { // validation here … }

private:
static vector<std::string> _names;

};

• This way we can validate or log changes, or change the internal representation, if
needed.

Globals

• If you think you must use globals, here is the correct way to do that:

• In header file: extern std::vector<std::string> names;

• In implem. file: vector<std::string> names;

• The problems with globals are:
• No way to track access – who modified? Who used?

• No way to validate changes

• Changing representation breaks every user. Who are the users?

• Destroys reusability of all users

• Creates mutual dependency among all users

• Require either compile-time or load-time initialization
• May not have the knowledge to do that until later

References

• A reference is an alias for its intializer:
• int a = 0;

int &ra = a; // alias for a
int *ptr = &ra; // refers to a
ra = 1; // a now has value 1
a = 2; // ra now has value 2

• C++ (before C++11) does not allow:
• References to references

• Pointers to references

• Arrays of references

• Null references

• References to void

• Resetting references after declaration

• References can’t be const or volatile

References

• A reference can refer to any lvalue (something with a memory
location), e.g.:
• int &elem = array[i][j]; // refers to the array element currently

// indexed by i and j

• std::string& name = p->info[n].name;

• You can assign to references returned by functions.

double& vec::operator[](int n); ➔ vec v; … v[3] = 3.14159;

• References support multiple return values through side-effects:

std::string lookup(const std::string& id, std::string& status);

returns value of lookup, const id, and mutable status.

std::ref

• If a function accepts its argument(s) by value you can force a pass by
reference by using std::ref, like this:

someFunction(std::ref(anInstance))

std::move

• If you choose to create some data structure type in a function to be
used elsewhere you MUST return by value. If the type provides a
move constructor that will be called, else its copy constructor is
called.

• If you pass an instance of a type to a function by value and the caller
will not use it subsequently you should use std::move, like this:

someFunction(std::move(theInstance))

That will cause a move constructor to be called if defined, else a copy
constructor is called. If moved, theInstance is no longer valid.

Const and Null Pointers

• const int* pInt = &j; // can’t change *pInt, can change pInt

• int* const pInt = &j; // can’t change pInt, can change *pInt

• const int* const pInt = &j; // can’t change *pInt or pInt

• To define a null pointer:

pInt = 0; or pInt = nullptr; (C++11)

• Don’t use predefined NULL, Null, null:
• #define NULL ((char*)0) ??

• #define NULL ((void*)0) ??

• #define NULL 0 ??

unless documentation tells you to do so (Win32 API)

Copy Construction and Assignment

• EVERY class design should explicitly decide to provide copy
construction, assignment, and a destructor, let the compiler do so, or
disallow them.
• Provide them if class members do not have the copy and assignment semantics

you need. Then use the standard declarations:
• X::X(const X&)

• X& X::operator=(const X&);

• If class members have correct copy and assigment semantics let the compiler
implement them and the destructor by not declaring them.
• That results in member wise copy, assignment, and destruction

• If class semantics don’t require copy and assignment, then disallow them by
declaring them private and not implementing them.

Assertions

• Assertions can be useful debugging tools:

#include <cassert> … assert(arg);

This statement:
• prints line number and file name and aborts whenever arg is false.

• The assert macro can be turned off by #define NDEBUG before the include of
<cassert>.

• If you do not make this definition, Visual Studio will enable asserts in Debug
builds and disable them in Release builds.

• Never make assignments or evaluate functions in an assert. The
corresponding side-affects will be removed when you make a Release
build. Even if you are positive a function has no side effect, a
maintenance programmer may add one later.

Stroustrup’s Assert

• Bjarne Stroustrup suggests (pg 751) the use of the following template
instead of asserts:

template <typename T, typename A>
inline void Assert(A assertion)
{

if(!assertion) throw T();
}

So, this now will work:

Assert<range_error>(0<=n || n<MAX);

To check only when debugging:

Assert<range_error>(NDEBUG || 0<=n || n<MAX)

Conversion Constructors

• Conversion constructors (I often call them promotion constructors,
but I’m trying to convert) can be called at times when you don’t mean
them to be called, perhaps because of a logic error.

You can prevent that by making them explicit:

class Y { … };
class X { public: explicit X(Y& y); … };

X x = Y(); // fails to compile
X x = X(Y()); // succeeds

Casts

• C++ now defines four casts:
• X x = Static_cast<X>(y);

• calls a ctor to convert y to an X instance if one exists or the conversion is supported by the
language.

• Otherwise statement fails to compile.

• D* pD = dynamic_cast<D*>(pB);
• Succeeds if pB is a base pointer to an instance of D and D inherits publically from B. Then

it returns the address contained in pB.

• Fails if pB does not point to a D instance. In this case it returns 0.

• RTTI must be enabled in Visual Studio or the cast will throw an exception.

• X *pX = const_cast<X*>(&x);
• Returns a pointer to non-const even if x is const.

• X *pX = reinterpret_cast<X*>(&y);
• Return address of y, but interpret it’s type as pointer to X.

Usually bad thing to do.

Casts

• Prefer the new casts over the old-style cast:

X* pX = (X*)&y;

The intended semantics of this could be any of the four distinct
operations, discussed on the previous slide. Which is it???

If you believe you have a cast error - quite common - how do you
find it? Search for ‘(‘ ???

Temporaries

• Be careful with temporaries. They live only for the lifetime of the
statement in which they are embedded.

Std::string s1 = “now is the hour “;
std::string s2 = “for all good men to come to the aid “;
std::string s3 = “of their country”;
const char* pChars = (s1 + s2 + s3).c_str(); // *pChars valid
std::cout << pChars; // now invalid

Returning References

• Return a reference or pointer from a function only if the object
referred to existed before the function call. Otherwise one of the
following must hold:
• The reference is bound to a temporary created in the function, e.g., disaster.

• The reference is bound to an object the function created on the heap with
new. Now ownership of memory is shared, usually a bad idea.

• The reference is bound to a global or static to which the function assigned a
new value. The client’s reference may change the next time the function is
called.

End of Presentation

