
Adapter Pattern

Jim Fawcett

CSE687 – Object Oriented Design, Spring 2003

Adapted from a Presentaton by

Matt Smouse and Jeff Ting

CSE776 – Design Patterns, Summer 2001

Intent

• Adapt an existing class rather than modify for reuse:
• Convert interface of a useful class into another interface clients expect

• Also known as the wrapper design pattern; it wraps existing
functionality of an adaptee with an adapter’s inherited interface.

Motivation

• TextView example

• Client is a drawing editor which wants to accommodate both shapes
and text.

• Adaptee is an existing TextView class which can display and edit text.

• Target is a Shape class which provides the key abstraction for
graphical objects.

• Adapter is a TextShape class which inherits the Shape interface and
adapts the TextView interface to the inherited Shape interface.

Motivation: Class Adapter

DrawingEditor Shape

BoundingBox()

CreateManipulator()

Line

BoundingBox()

CreateManipulator()

TextShape

BoundingBox()

CreateManipulator()

TextView

GetExtent()

Motivation: Object Adapter

DrawingEditor Shape

BoundingBox()

CreateManipulator()

Line

BoundingBox()

CreateManipulator()

TextShape

BoundingBox()

CreateManipulator()

TextView

GetExtent()

text

Applicability

• Use an adapter when you have existing classes and need to add
functionality while providing a common interface.

• Use an adapter when you want a reusable class which will handle
software that you did not write.

• Use an object adapter when you have to provide for several different
adaptee subclasses which inherit from a parent* adaptee.

*Must use object adapter when adaptee is abstract.

Structure: Class Adapter

Client Target

Request()

Adapter

Request()

Adaptee

SpecificRequest()

(implementation)

SpecificRequest()

Structure: Object Adapter

Client Target

Request()

Adapter

Request()

Adaptee

SpecificRequest()

adaptee->SpecificRequest()

Participants

• Target
• defines the interface that the Client will use.

• Client
• creates and interacts with objects which conform to the target

interface.

• Adaptee
• has an interface that needs adapting.

• Adapter
• adapts the interface of the adaptee to that of the target.

Collaborators

• Clients will create instances of the adapter and any adaptees to be
used.

• Clients will call operations within instances of the adapter.

• The adapter will call adaptee operations on behalf of the client.

• The adapter may or may not perform additional processing on any
data that the adaptee methods return.

• The adapter is the middleman for all operations involving the
adaptee.

Consequences

• Class Adapter
• Must commit to a concrete adaptee. This won’t work for an abstract

adaptee, and it won’t work when adapting multiple adaptees.

• The adapter can override some of the adaptee’s behavior; the adapter is a
subclass (child) of the adaptee.

• No additional pointer indirection to access adaptee.

• Object Adapter
• Can work with adaptee subclasses and add functionality to those

subclasses.

• The adapter cannot easily override adaptee behavior; only can do this by
referring to an adaptee subclass.

Implementation: Class Adapter

• Based upon multiple inheritance

• Inherit publicly from Target (the interface) and privately from
Adaptee (the implementation)

• Adaptor is a subtype of Target but not of Adaptee

Implementation: Object Adapter

• Only inherits (publicly) from Target

• Adapter maintains pointer to Adaptee; Client must initialize this
pointer

• Will work with subclasses of Adaptee

Pluggable Adapter

• Special object adapter

• Make the target contain abstract (pure virtual) methods.
• Provide concrete operations which are common to any adapter

implementation.

• Provide abstract (pure virtual methods) operations which are required for
unique adaptation.

• Limit the number of abstract operations; it is easier to adapt a few necessary
operations than to adapt many.

• The client will instantiate the adapter it wishes to use; since all
adapters will conform to the target interface, we can swap them in
and out of the client and it won’t know the difference (beyond
instantiation).

Two-way Adapter

• Based upon multiple inheritance

• Inherits publicly from both classes (interfaces)

• Two Adaptees, no Target

• Used to combine functionality of two unlike classes

Two-way Adapter

Adapter

Adaptee1 Adaptee2

Known Uses

• ET++Draw

• InterViews 2.6

• Pluggable adaptors in Smalltalk

• FixedStack

• ACE ORB (?)

• Java applications (object adapters only)

Related Patterns

• Bridge
• Separates an interface from its implementation.

• Adapter works with existing object.

• Decorator
• Enhances another object without changing interface.

• Adapter is less transparent to the client.

• Proxy
• Representative for another object, no interface change

• Adapter changes (adapts) the object’s interface.

End of Presentation

