CSE687 — Object Oriented Design Midterm #4 Spring 2016

CSE687 Midterm #4

Name: Instructor’s Solution SUID:

This is a closed book examination. Please place all your books on the floor beside you. You may
keep one page of notes on your desktop in addition to this exam package. All Exams will be
collected promptly at the end of the class period. Please be prepared to quickly hand in your
examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and | will come to
your desk to discuss your question. | will answer all questions about the meaning of the
wording of any question. | may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal
weight for grading, but not all questions have the same difficulty. Therefore, it is very much to
your advantage to answer first those questions you believe to be the easiest.

CSE687 — Object Oriented Design Midterm #4 Spring 2016

1. Code analyzers often need to record type definitions, the files where they are found, and a list
of all their namespaces. Provide a class declaration for a TypeTable that holds this information
and implement as many of its methods you can with the time available to you.

template<typename TableRecord>
class TypeTable

{
public:
using iterator = typename std::vector<TableRecord>::iterator;

void addRecord(const TableRecord& record)

{

_records.push_back(record);

}
TableRecord& operator[](size_t n)

if (n <@ || n >= _records.size())
throw(std: :exception("index out of range"));
return _records[n];

TableRecord operator[](size_t n) const

if (n <@ || n >= _records.size())
throw(std: :exception("index out of range"));
return _records[n];

}

iterator begin() { return _records.begin(); }

iterator end() { return _records.end(); }
private:

std::vector<TableRecord> _records;

1

Since the table takes a template argument TableRecord we can store whatever information is
appropriate for a specific application. That will need to hold a type, a name, a list or vector of
namespaces, and other information the application needs, if any.

The information details discussed in the question, above, are illustrated in the complete solution
in MTCode-S16, MT4Q1 project.

CSE687 — Object Oriented Design Midterm #4 Spring 2016

2. Why are the methods of a template class placed in the header file of its package?

A C++ compiler can’t generate code for a template class or function until the using application
instantiates it with a known type. So templates are checked for syntax when compiled,
deferring code generation until an application includes the template’s header file and is
compiled.

The compiler does not have access to the template’s implementation file (it only sees the
included header files’ text) so you must provide all the template implementation details in the
header.

This is the sequence of assertions that demonstrate the need:

a. When templates are compiled their parameter types are not known and so no code can
be generated. Only simple syntax checking takes place.

b. Only when an application instantiates the template type or function does the compiler
know the type. Then, if and only if, it has the complete definition of the template can it
generate code for the instantiation.

c. Since only header files are included by the application code, the entire definition of the
template must be found in one of its included headers.

CSE687 — Object Oriented Design Midterm #4 Spring 2016

3. Suppose you are given a std::vector of pointers to structs where each struct identifies a person,
having an entry for first name, last name, and city of residence. Write a lambda to display all the
entries with duplicate last names, e.g., John Smith Syracuse, Bill Smith Albany, etc.

/*

* Note: 1I'm finding people who live in the same city
* instead of having the same last name.

*

* The code is essentially the same.

* Just substitute last name where I've used city.
*

* I think this example is more interesting.

*/

struct Person

{

std::string firstName;
std::string lastName;
std::string city;

s

using People = std::vector<Person*>;

void showPerson(Person person)

{
std::cout << "\n ";
std::cout << std::setw(10) << person.firstName;
std::cout << std::setw(15) << person.lastName;
std::cout << std::setw(10) << person.city;

}

std: :function<void(People&)> f = [](People& people)

{
using City = std::string;

std::unordered_map<City, People> collectDups;
for (auto pPerson : people)

collectDups[pPerson->city].push_back(pPerson);
}

for (auto item : collectDups)

{

People temp = item.second;
if (temp.size() > 1) // move than one person in this city

{

for (auto pPerson : temp)
showPerson(*pPerson);

1

CSE687 — Object Oriented Design Midterm #4 Spring 2016

4. State the Interface Segregation Principle and describe how to apply it in practice. Give an
example discussed in class where ISP has been applied.

“Clients should not be forced to depend on interface elements they do not use.”
A very direct example of ISP is the Factory for AbstractProduct demo. There we provide a core
interface |AbstractProduct and two interfaces that extend the language to invoke other

behaviors, e.g., Interfacel and Interface2.

The parser also uses ISP since the interfaces for rules and actions have been segregated. The
parser only depends on IRule while the rules depend on IActon.

CSE687 — Object Oriented Design Midterm #4 Spring 2016

5. Given the compound object shown in the diagram, below, what happens when the following
code executes?

B* pB = new D;

delete pB;
B @———Composition C
;E
D Uses————P»| U

The composite object d constructed from D contains, within its memory footprint, an instance of
the base class B which in turn contains an instance of the composed class C.

Construction of D will always cause B to be constructed (whether we explicitly invoke the B
constructor or not) and construction of B will always cause C to be constructed (whether we
explicitly invoke the C constructor or not).

Designers can always control how constructor proceeds by explicitly invoking constructions on
bases and member instances in constructor initialization sequences.

For default construction there is no need to do that as the compiler will always invoke default
constructors on bases and members.

For copy and move constructions the designer must explicitly invoke the base and member
constructors.

See code in MT4Q1.cpp for these details.

T

// Complete solution

The first statement causes a default construction of D on the heap so we also get default
construction of B and C. Assuming B has defined a virtual destructor, then the second
statement calls D’s destructor. The destructor of D calls the destructor of B which, in turn, calls
the destructor of C. If the B destructor is not virtual then only ~B() and ~C() are called.

Since U is used but not owned by D, none of the D operations directly cause U to be created or
destroyed.
/1 &nd of solution ////1//1111111111111111111111111111111111111117

CSE687 — Object Oriented Design Midterm #4 Spring 2016

6. What do the functions std::thread::join() and std::thread::detach() do?

a. std::ithread::join() waits for the joined thread to exit its processing function when the
underlying Windows thread becomes signaled, allowing the wait to return.

b. std::thread::detach() disassociates the thread object from its underlying operating
system thread. This allows the thread to continue without ever blocking the thread that
called detach().

CSE687 — Object Oriented Design Midterm #4 Spring 2016

7. Given the class declaration below, describe the operation of each of the declared methods. A
correct answer provides more information than just the operation names.

class X {
public: X(); X(const X&); X(X&&); operator=(const X&); operator=(X&&); ~X();
/* other methods that are not part of this question */

|3

a. X()is the default constructor for instances of X. It is used to initialize simple declarations
with no arguments and arrays with no initializers.

b. X(const X&) is the copy constructor for instances of X. Its function is to create a new
instance with the same state as the source. It is used when objects are passed to
funtions by value and\or returned by value when there is no move constructor. Itis also
used for explicit copy construction statements.

c. X(X&&) is the move constructor for instances of X. Its function is to transfer ownership
of resources from the source to a newly created instance. It is invoked when temporary
X objects are returned from functions by value and any other time when the source of
the operation is a temporary or in statements like X x2 = std::move(x1); The source is
often invalid after the move operation.

d. X& operator=(constX&) is a copy assignment operation. Its purpose is to make the state
of an existing instance of X the same as the state of the source, and is invoked whenever
an existing object is succeeded by the = operator.

e. X& operator=(X&&) is a move assignment operator. Its purpose is to transfer ownership
of the source’s resources to an existing instance of X and deallocating the target’s
resources. Itis invoked whenever the source is a temporary object or when we declare
the operation like this: x2 = std::move(x1); As for move construction the source object is
often invalid after the move.

f. ~X() is the destructor of the X class. Its purpose is to deallocate resources used by an
instance of the X class. It is invoked whenever an instance of X goes out of scope or an
exception is thrown in the scope in which it is declared after the declaration. It is also
invoked when an application calls delete on a pointer to an X instance on the native
heap.

