
ASP.Net – Part II

Jim Fawcett

CSE686 – Internet Programming

Spring 2011



References

 Pro ASP.Net 4.0 in C# 2010, MacDonald, Freeman, & Szpuszta, 
Apress, 2010

 Programming Microsoft .Net, Jeff Prosise, Microsoft Press, 2002, 
Chapters 5 and 6.

 Essential ASP.NET with Examples in C#, Fritz Onion, Addison-
Wesley, 2003

– Several of the examples used here for state management were 
used with only minor modifications from this reference.



Topics

 Architecture

 Controls

 Data Binding

 State Management



Architecture

 ASP application

– ProcessXML.aspx

– ProcessXML.aspx.cs

– Web.config

 Page Class

– MapPath()

– Application

– ContentType

– Context

– IsPostBack

– Request

– Response

– Server

– Session

– Trace

– User

– …

 ProcessXML_aspx
– Page_Load(Object, System.EventArgs)
– Button1_Click(Object, System.EventArgs)
– InitializeComponent()
– …

System.Web.UI.Page

ProcessXML_aspx

(WebForm class)

XMLReadAndWrite.WebForm1

(Codebehind class)



Page Events

 public event EventHandler Init;
Page_Init(object,EventArgs)

 public event EventHandler Load;
Page_Load(object,EventArgs)

 public event EventHandler PreRender;
Page_PreRender(object,EventArgs)

 public event EventHandler Unload;
Page_Unload(object,Eventargs)

 protected virtual void
OnInit(EventArgs e);

 protected virtual void
OnLoad(EventArgs e);

 protected virtual void
OnPreRender(EventArgs e);

 protected virtual void
OnUnload(EventArgs e);



ASP.Net Directives

 @Page

– Defines Language and Code-Behind file

 @Import Namespaces

– Equivalent to using directives

 @Register

– Registers user controls with page.  Page will call render on each of its 
registered controls.

 @Implements

– Declares an interface this page implements

 @Reference 

– Specifies a page or user control that will be compiled and linked at run-time

 @Assembly

– Links an assembly to the current page during compilation

 Plus more – see help documentation



Page Attribures

 CodeFile

– Specifies a path to a code-behind file for the page.  Used with 
Inherits attribute.

 Inherits

– Defines a code-behind class for the page to inherit.

 AutoEventWireup

– If true, the default, simple event handlers like Page_Load(…) are 
wired up automatically.

 Debug

– If true, code behind is compiled with debug symbols.



ASP Components

 You can create library assemblies that are available to every 
aspx page in your application.

– Compile the library dll assembly

– Place it in a bin directory under the application virtual directory

– It will then be implicitly referenced by any page that loads from the 
application directory

– You can copy over the dll with an update without stopping IIS.

• If you do this, the new version becomes available on the next page 
load.



Controls

 HTML Controls

– HTML syntax

– runat=server attribute

– Derives from HtmlControl

– Instance created at server when 
page is constructed

 Examples:

– <form runat=server>

– <img runat=server>

– <input type=file runat=server>

– <input type=radio runat=server>

 Web Controls

– asp: prefix

– runat=server attribute

– Derives from WebControl

– Instance created at server when 
page is constructed

– Richer set of methods, properties, 
and events than HTML Controls

 Examples:

– <asp:TextBox id=tb1 
runat=server>

– <asp:Button Text=“Submit” 
runat=server>



Web Control Catalog

 TextBox

 Label

 HyperLink

 Image

 CheckBox

 RadioButton

 Table – matrix addresses

 Panel

 Button 

 ListBox

 DropDownList

 CheckBoxList

 RadioButtonList

 Repeater – HTML template

 DataList – HTML template

 DataGrid – no longer in toolbox 
by default, but can be added

 Calendar

 Validation Controls
– RequiredField

– RegularExpression

– Range

– Compare

– Custom



Data Related Controls

 Data Controls

– GridView

– DataList

– DataSet

– DetailsView

– FormView

– Repeater

– SqlDataSource

– ObjectDataSource

– XmlDataSource

– SiteMapDataSource

 Validation Controls

– RequiredFieldValidator

– RangeValidator

– RegularExpressionValidator

– CompareValidator

– CustomValidator



More Controls

 Navigation Controls

– SiteMapPath

– Menu

– TreeView

 Login Controls

– Login

– LoginView

– PasswordRecovery

– LoginStatus

– LoginName

– ChangePassword

 Webparts

– WebPartManager

– ProxyWebPartManager

– WebPartZone

– CatalogZone

– DeclarativeCatalogPart

– PageCatalogPart

– ImportCatalogPart

– EditorZone

– AppearanceEditorPart

– BehaviorEditorPart

– LayoutEditorPart

– PropertyGrideEditorPart

– ConnectionsZone



User Defined Controls

 User controls are stored in ascx files.

 They contain an @control directive that plays the same role as 
the @Page directive for WebForms.
– <%@ Control classname=“UserControlCS” %>

 In an aspx file that uses the control:
– <%@ Register 

TagPrefix=“cse686” TagName=“IP” Src=“MyControl.ascx” 
%>

– <cse686:IP id=“myControl1” runat=“server” />

 A user control may contain HTML and codebehind with 
methods, properties, and events.

 Events are declared as delegates with the event qualifier



Custom Server Controls

 Custom Server Controls are stored in C# files.

 A Server Control contains a C# class that defines the attributes:
– [Bindable(true)]

– [Category(“Appearance”)]

– [ToolboxData(“<{0}:NavBar runat=server></{0}:NavBar>”)]

 And a class NavBar : System.Web.UI.WebControls.WebControl

 In an aspx file that uses the control:
– <%@ Register 

TagPrefix=“cse686” assembly=“NavControl”
namespace=“NavControl

%>

– <cse686:NavBar id=“NavBar1” runat=“server” />



Data Binding

 Data Binding provides an abstraction for loading a control with 
data provided by some collection.

 The data is cached in the control until it is rendered on the 
client’s page by putting it onto the response buffer, formatted 
according to the control’s policy.

 We have already seen an example of binding an HTML table to 
an XML file, in Lecture #2.

 Binding is often used when an ASP application connects to a 
database through a DataReader or DataSet.



Data Binding

 Controls that Support Data Binding must expose:

– a property called DataSource

– a method called DataBind()

 The data source must provide:

– IEnumerable interface

 Example:
DataSet ds = new DataSet();

ds.ReadXML(Server.MapPath(“test.xml”);

ListBox1.DataSource = ds;

ListBox1.DataTextField = “file”;  // omit if flat

ListBox1.DataBind();



Data Binding

 Data Binding Controls

– HtmlSelect

– CheckBoxList

– DataGrid

– DataList

– Repeater

– DropDownList

– ListBox

– RadioButtonList

 Data Sources

– Array

– ArrayList

– HashTable

– Queue

– SortedList

– Stack

– StringCollection

– DataView

– DataTable

– DataSet

– IDataReader

– Classes that implement 
IEnumerable



State Management

 Adding user state inherently reduces scalability.
– So if you are trying to provide a resource that handles a large 

volume of traffic, you will want to minimize use of state.

 Types of state
– Application:

Shared across all clients of this application

– Session:
Per client state persistent over page boundaries.  Requires cookies 
or URL mangling to manage client association.

– Cookie:
Per client state stored on client.  Clients can disable cookies.

– ViewState:
Shared across post requests to the same page.  Sent back and 
forth with each request.



Application State

 In Global.asax: (add new item/Global Application Class)
void Application_Start(object src, EventArgs e)

{

DataSet ds = new DataSet();  // populated by clients

Application[“SharedDataSet”] = ds;

}

 In Application Page:
private void Page_Load(object src, EventArgs e)

{

DataSet ds = (DataSet)(Application[“SharedDataSet”]);

// client interacts with DataSet

}



Session State

 By default session state is managed in the same process and 
application domain as the application so you can store any data  
in session state directly.

 Session state is available as a property of both Page and 
HttpContext classes.

 It is:
– Initialized in Global.asax

– Accessed in any member function of the Page.

 You specify whether you want session ids managed as cookies 
or URL mangling in the web.config file:

<configuration>

<system.web>

<sessionState cookieless=“true” />

</system.web>

</configuration>



Session State

 In Global.asax:
void Session_Start(object src, EventArgs e)

{

DataSet ds = new DataSet();  // populated by clients

Session[“myDataSet”] = ds;

}

 In Application Page:
private void Page_Load(object src, EventArgs e)

{

DataSet ds = (DataSet)(Session[“myDataSet”]);

// client interacts with DataSet

}



Cookies

 Protected void Page_Load(Object sender, EventArgs e)

{

int age = 0;

if(Request.Cookies[“Age”] == null)

HttpCookie ac = new HttpCookie(“Age”);

ac.Value = ageTextBox.Text;

Response.Cookies.Add(ac);

age = Convert.ToInt32(ageTextBox.Text);

}

else

{

age = Convert.ToInt32(Request.Cookies[“Age”].Value);

}

// use age

}



ViewState

 ViewState is used by ASP controls to transfer control state back 
and forth between server and client.

 You also can use ViewState to transfer application state:

private void Page_Load(Object sender, EventArgs e)

{

ArrayLIst cart = (ArrayList)ViewState[“Cart”];

if(cart == null)

{

cart = new ArrayList();

ViewState[“Cart”] = cart;

}

}

// use cart with:

ArrayList cart = (ArrayList)ViewState[“Cart”];

cart… yada, yada, yada



End of Presentation


