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Diagrams for Architecture

 Activity Diagram (high level program behavior)
Shows activities a program carries out

* Which activities may be executed in parallel

* Which activities must be synchronized for correct operation

» Package Diagram (package structure of program or system)

* Enumerates all software packages

* Shows calling dependencies between packages

 Module Diagram (packages in a subsystem — focused on one responsibility)

* Enumerates modules

* Shows calling dependencies between modules
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Desigh Documentation

e Class Diagram

* Shows classes that are used in a program along with their relationships

e Sequence Diagram

* |llustrates the timing of important messages (method invocations) between objects in the
program.

Structure Chart (not UML)

* Shows calling relationships between all the functions in a package or module.

State Diagram

* |llustrates how a program navigates through its states.

Data Structure Diagram, Ad-Hoc Diagram (not UML)

* Presents the layout and relationships between important pieces of data in the program.
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Diagrams for Requirements

e Context Diagram

* Shows how program interacts with its environment

e Data Flow Diagram

* Represents requirement processing and the information flows necessary to sustain them.
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Activity Diagram

e Each of the blocks represents
a specific processing activity.

e Start and stop activities are
explicitly shown

* Synchronizing bars indicate
timing constraints:

* No output activity can start
until all of the input activities
have completed.

* Multiple output activities
indicate tasks that can run in
parallel.

e Table of Contents
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[ Open Checkin

Create LogsQuery Message
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Package Diagrams
 Enumerate each of the packages in a
program or module.

* Show calling relationships with one-
way directed lines.

* May show module boundaries.
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Class Diagrams

 Show each class with a named
rectangle.

* Show class relationships:

* Inheritance with a line beginning with a
triangle attached to the base class.

e Composition with a solid diamond
attached to the composer

* Aggregation with a hollow diamond
attached to the aggregator

e Using with a directed line from the user
to the used class.

* May show module boundaries.

* May show methods and members
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Parsing Facility
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Sequence Diagram

* Represents conversations between

objects in a program.

Each horizontal line is a method
invocation. Text is the name of the
method called.

Increasing time flows downward in
the diagram.

Multiple calls are shown with an

(uxn

asterisk .

Each bar represents lifetime of the
named object.
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State Diagram

 Shows transitions between
processing states.

* May have entrance and exit
transitions.

Table of Contents
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Tokenizer State Diagram

* This example is typical of the
diagrams you will draw to
illustrate states implemented in
one of your programs.

* |t documents one of my early
tokenizer designs.
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bt Table of Contents
Structure Chart (not UML)
| cccicominrun | | snowtsimesuts | | umiosarestpomain
» Shows function calling relationships.

* Used when there is a deep nesting of T ] [ resmucture Chart
calling relationships.

* Used infrequently, but it is the best way cosaiomtonan | | onan |
to understand deep calling relationships.
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Ad-Hoc Diagram

 Ad-Hoc

 Latin phrase “for this”

Scheme for Pipe-Lined Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Start Pass #1

* “designed for a specific
problem or task”.

o

filespecs
* Both quotes from Wikipedia. LA p;m\anyperab.e
e A diagram made to suit one e Werge T5oe
particular purpose.
Merge Results
* This diagram represents a
parallel-pipelined software Z
structure | used for code "oy [ e

analysis.
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Diagrams for Requirements

Context Diagram
* Shows relationships of program with its environment

Table of Contents

Data Flow Diagram
* Shows information flow between processing blocks
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The End

More discussion on a few of the diagrams here:
UML-Diagrams.htm
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