UML Notation

Jim Fawcett
CSE681 — Software Modeling and Analysis
Fall 2017

Diagrams for Architecture

 Activity Diagram (high level program behavior)
Shows activities a program carries out

* Which activities may be executed in parallel

* Which activities must be synchronized for correct operation

» Package Diagram (package structure of program or system)

* Enumerates all software packages

* Shows calling dependencies between packages

 Module Diagram (packages in a subsystem — focused on one responsibility)

* Enumerates modules

* Shows calling dependencies between modules

UML Notation

Desigh Documentation

e Class Diagram

* Shows classes that are used in a program along with their relationships

e Sequence Diagram

* |llustrates the timing of important messages (method invocations) between objects in the
program.

Structure Chart (not UML)

* Shows calling relationships between all the functions in a package or module.

State Diagram

* |llustrates how a program navigates through its states.

Data Structure Diagram, Ad-Hoc Diagram (not UML)

* Presents the layout and relationships between important pieces of data in the program.

UML Notation

Diagrams for Requirements

e Context Diagram

* Shows how program interacts with its environment

e Data Flow Diagram

* Represents requirement processing and the information flows necessary to sustain them.

UML Notation

Activity Diagram

e Each of the blocks represents
a specific processing activity.

e Start and stop activities are
explicitly shown

* Synchronizing bars indicate
timing constraints:

* No output activity can start
until all of the input activities
have completed.

* Multiple output activities
indicate tasks that can run in
parallel.

e Table of Contents

Children of Selected File

[Open Checkin

Create LogsQuery Message
and send to Repository

Send files to Repository

Collaboration System Client Activities

UML Notation 5

Package Diagrams
 Enumerate each of the packages in a
program or module.

* Show calling relationships with one-
way directed lines.

* May show module boundaries.

UML Notation

Window

1]

ClientExec

J {

> FileMgr

Table of Contents

1

1

TestMgr

1

Messages I — QueryMgr

Receiver ;

BlockingQueue

‘ Sender

FileMgr

1

Window j

1

1

Utilities

[

! Executive

4

Logger

Code Analyzer Packages

Table of Contents

File System

\J

1

Parser

3 o

ActionsAndRules

i

A

ki

GrammarHelpers [

1

_IV \ 4
®_) SemiExp <
— v
> Tokenizer [

(Oe—I

ConfigParser

&

NoSqlDb TypeTable
1
} AbstrSynTree < DepAnal)
1 |
e ScopeStack € — —
StrongComp Display
1
CppGraph

Class Diagrams

 Show each class with a named
rectangle.

* Show class relationships:

* Inheritance with a line beginning with a
triangle attached to the base class.

e Composition with a solid diamond
attached to the composer

* Aggregation with a hollow diamond
attached to the aggregator

e Using with a directed line from the user
to the used class.

* May show module boundaries.

* May show methods and members

UML Notation

.Net System Library

Delegate

T

MulticastDelegate

A

Table of Contents

Reference
to function

Y

Subscriber class

MyDelegate |«

L%

Publisher class

Publisher Module

Subscriber Module

Parsing Facility

Table of Contents

Executive

GUIExec S

Commtebrecc>

IBuilder

ConfigureParser

Display

Formatter

Parser

-breakingRules - vector<IRule*>
-nonbreakingRules : vector<IRule*>
-ITokCaoll - ITokCollection®
+addRule{in pRule - IRule®) : void
+parse() - bool

ITokCollection

IRule

-actions - vector=laction*=

lAction

+addAction(in pAction : laction™) - void
+doActions(in pTokColl : ITokCollection™) : wvoid

rdodction(in pTokCell : ITekCollection®) : void

+doTest(in pTokColl | ITokCollection™) © bool

|Deri-.rednu|e2 |

| DerivedRuled |

Parser

|Eleri1redA.c1iDn'1 |-f,:>—|

ostream

I
—1

AbstrSynTree

O—

XmilParts or SemiExp

-pToker - Toker*

-toks : vector=string=

+get() : bool

+operatorf](in n : int) ; string
+find(in tok : siring) - int
+removelin tok - string) : bool

®7

}-putbacks - vector<char=

Toker I
-scToks : sting |

+geiTok() - siring
+attach{in name : const Siring&, in isFile - bool) : bool

ifstream

istringstream

WPRFCppClIDemo

Settinga

bessssssssnsssssnansssnansusnsnsnansnsnsnnnsnnnnnnng,

g essssaansn

CodeanslyslzExecutive

GrammarHelpsrs

IRuls

Flishigr

Parasr

o
PETTTTTTY

aEsmmmEma®

s

-ﬁuu-

Directory

ansnnnnnnnt

........................uuuu;r

Win3z APl

P L L T T T T T T T T T T TP TPy R

Fay

laction

DarlvedRuls

i

IBulidar

ConfiguraParasr

Derivedaction

4

bessssssansnnmus,

Table of Contents

I ———
I

e] SamiExp

—

uuu++++++++++++unnnn’p—

Tokanlzer

stringHelper

Convyartar

Loggar

Consuma 5iate

ITokCollection

Contaxt

EatiX-5tate

Reposliong Scope stack

L

Absir ynTres

4 ETHode

Code Analyzer Classes

Sequence Diagram

* Represents conversations between

objects in a program.

Each horizontal line is a method
invocation. Text is the name of the
method called.

Increasing time flows downward in
the diagram.

Multiple calls are shown with an

(uxn

asterisk .

Each bar represents lifetime of the
named object.

dupsExec
main()
]

Duplicates Processing

¥

dupsProc——

A

startPath————p

]

walk

L

dirsProc*———

=
*

L]

fileProc*———p

dupsProc

Table of Contents

fileStor

add-

UML Notation

A 4

A 4

fileMap——— |

11

State Diagram

 Shows transitions between
processing states.

* May have entrance and exit
transitions.

Table of Contents

Server

receive message Isend message

l /received token l Ireceived exit message
‘ Receiving ‘ Sending |)@

N Isent token —

UML Notation

Isend message or token Isend message or token
— Isent token Ireceived exit message
Isend token
Sending Receiving
Ireceived token jJ
Isend message Ireceive message
Client

State Chart - Socket Bilateral Communication

12

Tokenizer State Diagram

* This example is typical of the
diagrams you will draw to
illustrate states implemented in
one of your programs.

* |t documents one of my early
tokenizer designs.

scopelevel =0
no typedef

found typedef
declaritor
scopelevel =0
@ no typedef

display
complete

scanning
text

EOF

{ star } g

{2 }

no
declartor

Table of Contents

check fo
function

found '('
identifer
is a key
checking
type
found '’

found struct jgentifier is not
or class a key

display
complete @

scopelevel =0

display functio
and count line

bt Table of Contents
Structure Chart (not UML)
| cccicominrun | | snowtsimesuts | | umiosarestpomain
» Shows function calling relationships.

* Used when there is a deep nesting of T] [resmucture Chart
calling relationships.

* Used infrequently, but it is the best way cosaiomtonan | | onan |
to understand deep calling relationships.

Dirgctory Asgambly
GatFlles LoadFrom
AppDomaln aaaembly ¥ Type Loader °
Getagsemblias cetTypes Getintertace Invoker

Activator ° Tgrpe h Type
craatelnstance calType Ini ks Mg ber

Table of Contents

Ad-Hoc Diagram

 Ad-Hoc

 Latin phrase “for this”

Scheme for Pipe-Lined Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Start Pass #1

* “designed for a specific
problem or task”.

o

filespecs
* Both quotes from Wikipedia. LA p;m\anyperab.e
e A diagram made to suit one e Werge T5oe
particular purpose.
Merge Results
* This diagram represents a
parallel-pipelined software Z
structure | used for code "oy [e

analysis.

UML Notation 15

Diagrams for Requirements

Context Diagram
* Shows relationships of program with its environment

Table of Contents

Data Flow Diagram
* Shows information flow between processing blocks

file system

e

e

lle handle

/ﬁlename

standard

paged text——n output

command filenames,

line commands

[M—CITOl Mes:

standard error

~

",
L

N, .
”
o0,
nmwonz
e
$ 5
1] 2
£ N
& *a
£ %
= =
"ff-‘rmarh)ns @
& %
%
$ 5,
5 %,
& %,
o 2,
g G

16

UML Notation

The End

More discussion on a few of the diagrams here:
UML-Diagrams.htm

UML Notation

17

../Lectures/UML-Diagrams.htm

