
Managed and Unmanaged C++

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2005



References

 Essential Guide to Managed Extensions of C++, Challa and 
Laksberg, Apress, 2002

 Developing Applications with Visual Studio.Net, Richard Grimes, 
Addison-Wesley, 2002



Managed C++ Syntax

 Include system dlls from the GAC:
– #include <mscorlib.dll>

 Include standard library modules in the usual way:
– #include <iostream>

 Use scope resolution operator to define namespaces
– using namespace System::Text;

 Declare .Net value types on stack

 Declare .Net reference types as pointers to managed heap
– String* str = new String(S”Hello World”);

 Managed arrays are declared in .Net style:
– int anArray __gc[] = new int __gc[5];

– Int32 anotherArray[] = new Int32[5];  // __gc not required for 
//   managed types 



Managed Classes

 Syntax:

__gc class myClass { … };

myClass* mc1 = new myClass();

myClass& mc2 = *new myClass();

 Can hold pointers and references to reference types.

 Can hold values, pointers, and references to value types.

 Deletion of pointers to managed objects fails to compile.

 Can call global functions and members of unmanaged classes 
without marshaling.

 Can hold a pointer to an unmanaged object, but is responsible 
for creating it on the C++ heap and eventually destroying it.



Defaults

 A pointer to a managed type is managed.  For unmanaged types 
you can specify a managed pointer:

– int __gc* pInt;

 A reference to a managed type is managed.  For unmanaged 
types you can specify a managed reference:

– int __gc& rInt = &i;

 An array of managed types is managed.  You specify a managed 
array of unmanaged types as:

– int array _gc[] = new int _gc[10];

 A class by default is unmanaged.  You specify managed as:

– __gc class myClass { … };



Type Conversions

C++ Type CTS Signed Type CTS Unsigned Type

char Sbyte Byte

short int Int16 UInt16

int, __int32 Int32 UInt32

long int Int32 UInt32

__int64 Int64 UInt64

float Single N/A

double Double N/A

long double Double N/A

bool Boolean N/A



Extensions to Standard C++

 Managed classes may have the qualifiers:

– abstract

– sealed

 A managed class may have a constructor qualified as static, 
used to initialize static data members.

 Managed classes may have properties:

– __property int get_Length() { return _len; }

– __property void set_Length(int len) { _len = len; }

 A managed class may declare a delegate:

– __delegate void someFunc(int anArg);



Managed Exceptions

 A C++ exception that has a managed type is a managed exception.

 Application defined exceptions are expected to derive from 
System::ApplicationException (this appears to be depricated) so just 
derive from System::Exception.

 Managed exceptions may use a finally clause:

– try { … } catch(myExcept &me) { … } __finally { … }

 The finally clause always executes, whether the catch handler was 
invoked or not.

 Only reference types, including boxed value types, can be thrown.



Code Targets

 An unmanaged C++ 
program can be 
compiled to generate 
managed code using 
the /clr option.

 You can mix managed 
and unmanaged code  
using 
#pragma managed  
and 
#pragma unmanged.  
Metadata will be 
generated for both.



Mixing Managed and Unmanaged Code

 You may freely mix unmanaged and managed classes in the 
same compilation unit.

– Managed classes may hold pointers to unmanaged objects.

– Unmanaged classes may hold pointers to managed objects 
wrapped in gcroot:

• #include <vcclr.h>

• Declare: gcroot<System::String*> pStr;

– That helps the garbage collector track the pStr pointer. 

– Calls between the managed and unmanaged domains are more 
expensive than within either domain.



Limitations of Managed Classes

 No templates – sigh!

 Only single inheritance of implementation is allowed.

 Managed classes can not inherit from unmanaged classes and 
vice versa.

 No copy constructors or assignment operators are allowed.

 Member functions may not have default arguments.

 Friend functions and friend classes are not allowed.

 Typedefs in managed classes are currently not allowed.

 Const and volatile qualifiers on member functions are currently 
not allowed.



Platform Invocation - PInvoke

 Call Win32 API functions like this:

– [DllImport(“kernel32.dll”)]
extern “C” bool Beep(Int32,Int32);

– Where documented signature is:
BOOL Beep(DWORD,DWORD)

 Can call member functions of an exported class

– See Marshaling.cpp, MarshalingLib.h



Additions to Managed C++ in VS 2005

 Generics

– Syntactically like templates but bind at run time

– No specializations

– Uses constraints to support calling functions on parameter type

 Iterators

– Support foreach construct

 Anonymous Methods

– Essentially an inline delegate

 Partial Types, new to C#, were always a part of C++

– Class declarations can be separate from implementation

– Now, can parse declaration into parts, packaged in separate files



End of Presentation


