Managed and Unmanaged C++

Jim Fawcett
CSE681 — Software Modeling and Analysis
Fall 2005

References

Essential Guide to Managed Extensions of C++, Challa and
Laksberg, Apress, 2002

Developing Applications with Visual Studio.Net, Richard Grimes,
Addison-Wesley, 2002

Managed C++ Syntax

Include system dlls from the GAC:
— #include <mscorlib.dll>
Include standard library modules in the usual way:
— #include <iostream>
Use scope resolution operator to define namespaces
— using namespace System::Text;
Declare .Net value types on stack
Declare .Net reference types as pointers to managed heap
— String* str = new String(S"Hello World™);
Managed arrays are declared in .Net style:
— int anArray __gc[] = new int __gc[5];

— Int32 anotherArray[] = new Int32[5]; // __gc not required for
// managed types

Managed Classes

Syntax:

__gcclass myClass { ... };
myClass* mcl = new myClass();
myClass& mc2 = *new myClass();

Can hold pointers and references to reference types.
Can hold values, pointers, and references to value types.
Deletion of pointers to managed objects fails to compile.

Can call global functions and members of unmanaged classes
without marshaling.

Can hold a pointer to an unmanaged object, but is responsible
for creating it on the C++ heap and eventually destroying it.

Defaults

A pointer to a managed type is managed. For unmanaged types
you can specify a managed pointer:

— int __gc* plnt;

A reference to a managed type is managed. For unmanaged
types you can specify a managed reference:

— int _gc& rInt = &i;

An array of managed types is managed. You specify a managed
array of unmanaged types as:

— int array _gc[] = new int _gc[10];

A class by default is unmanaged. You specify managed as:
— _gcclass myClass { ... };

Type Conversions

C++ Type CTS Signed Type CTS Unsigned Type
char Sbyte Byte
short int Intl6 UInti6
int, _ int32 Int32 UInt32
long int Int32 UInt32
__int64 Int64 UInt64
float Single N/A
double Double N/A
long double Double N/A
bool Boolean N/A

Extensions to Standard C++

Managed classes may have the qualifiers:
— abstract
— sealed

A managed class may have a constructor qualified as static,
used to initialize static data members.

Managed classes may have properties:
— __ property int get_Length() { return _len; }
— __ property void set_Length(int len) { _len = len; }

A managed class may declare a delegate:
— __ delegate void someFunc(int anArg);

Managed Exceptions

A C++ exception that has a managed type is a managed exception.

Application defined exceptions are expected to derive from
System::ApplicationException (this appears to be depricated) so just
derive from System::Exception.

Managed exceptions may use a finally clause:
— try { ... } catch(myExcept &me) { ... } _ finally { ... }

The finally clause always executes, whether the catch handler was
invoked or not.

Only reference types, including boxed value types, can be thrown.

« An unmanaged C++
program can be
compiled to generate
managed code using
the /clr option.

« You can mix managed
and unmanaged code
using
#pragma managed
and
#pragma unmanged.
Metadata will be
generated for both.

Code Targets

MixedClasses Property Pages

Canfiguration: I.ﬁ.ctive[DeI:uug]

j Platforr: I-":"-Cti\"E['v'v"in32] j

x|

Configuration Manager... |

=5 Configuration Properties =
General
Debugging
3 CC++
g General
(ptirmization
Preprocessor
Code Generatior
Language
Precompiled He:
Output Files
Browse [nfomati
Advanced
Command Line
(23 Lirker

(21 Resources
[MioL
(23 Browse Information

(23 Build Events _Ij
13

K I

Additional Include Directories
Resolve Busing References
Debug Information Farmat

Program Databasze (£Zi]

Compile Az Managed Agzembly Support [fel) j
Suppress Startup Banner ez [fnologo]
Warning Level Level 3 [fw3)
Detect 64-bit Portability [ssues Ha
Treat Warnings &g Ermors Ha
Compile Az Managed

Use the MET runtime services, incompatible with any untime checks.

[#ch]:nodssembly]]

o]

Cancel

Ll

Help

Mixing Managed and Unmanaged Code

« You may freely mix unmanaged and managed classes in the
same compilation unit.
— Managed classes may hold pointers to unmanaged objects.

— Unmanaged classes may hold pointers to managed objects
wrapped in gcroot:
e #include <vcclr.h>
o Declare: gcroot<System::String*> pStr;
— That helps the garbage collector track the pStr pointer.

— Calls between the managed and unmanaged domains are more
expensive than within either domain.

Limitations of Managed Classes

No templates — sigh!
Only single inheritance of implementation is allowed.

Managed classes can not inherit from unmanaged classes and
vice versa.

No copy constructors or assignment operators are allowed.
Member functions may not have default arguments.
Friend functions and friend classes are not allowed.

Typedefs in managed classes are currently not allowed.

Const and volatile qualifiers on member functions are currently
not allowed.

Platform Invocation - PInvoke

« Call Win32 API functions like this:

— [DllImport(“kernel32.dll")]
extern “C"” bool Beep(Int32,Int32);

— Where documented signature is:
BOOL Beep(DWORD,DWORD)

« Can call member functions of an exported class
— See Marshaling.cpp, MarshalingLib.h

Additions to Managed C++ in VS 2005

Generics
— Syntactically like templates but bind at run time
— No specializations
— Uses constraints to support calling functions on parameter type

Iterators
— Support foreach construct
Anonymous Methods
— Essentially an inline delegate
Partial Types, new to C#, were always a part of C++
— Class declarations can be separate from implementation
— Now, can parse declaration into parts, packaged in separate files

