Enterprise Computing
Collaboration System Example

Jim Fawcett
CSE681 — Software Modeling and Analysis
Spring 2010

Enterprise Computing combines Structures

* Enterprise computing binds together a business
with its partners, suppliers, and customers.
* May integrate many functions:

* Inventory control, order processing, product disclosure,
product design collaboration.

* Likely to be peer-to-peer with “distinguished” peer
that coordinates activities.

* Partners work together through a collaboration
subsystem.

e Uses web-based service oriented architecture.

Collaboration System

= System that focuses on sharing of processes and products
among peers with a common set of goals.

o Primary focus is organizing and maintaining some complex,
usually evolving, state:
= Software development baseline
= Set of work plans and schedules
* Documentation and model of obligations
= Communication of events

= Example:

o Collab — CSE784, Fall 2007,
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CSe
rv.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Virtual Collaboration-Repository-Testbed Server System
(VCRTS)

*Servers:
e Collaboration

* Holds work package definitions, schedules, job descriptions,
collaboration tools (white board, chat, ...)

* Repository

* Holds the developing project baseline, e.g., code, test drivers,
documentation, test results, ...

* Test Harness
* Performs all certified tests, only on Repository products.
* Clients

* Code development, test development, local testing, chatting,
whiteboard collaboration, ...

Example Collaboration System

Shores management information
{work packages, schedules, job descriptions),
provides collaborabon tools

Collaboration

Retrieve Product Status
Server
Dependency-based Storage
of certified code and
documents, provides
product analysis tools
Run collab. Tools
| | Yiew reports
Chat, ! |
Exchange Docs, *
Whiteboard collab
Check-in .
Run analysis tools Server
Yiew reports

All development
occurs here Posts
results bo servers .

Post test configurations
Run tests
Yiew reports

Supply code to Test Harness
Post best results bo Repository

,

Test Harness
Server

Runs certified tests
on certfied code

e

Virtual Servers

* Not defined by machine boundaries
* May have multiple servers on one machine

* May have multiple machines implementing one server, e.g.,
repository, testbed

e Can be easily replicated
 Download installer
* Select desired contents from source

* Create server

* All servers derive from abstract virtual server

* Virtual server is one of the core services.

Virtual Server Uses

* Project has VCRTS

* Manages all certified project products
* Code baseline
* Test code and results

* Documentation

* Teams have VCRTS

* Local management for each team

e Company has VCRTS

* Manages company’s reusable code base

Layered Structure

* Provides a structure based on:

* System Services — things the user doesn’t think about

« Communication, storage, security, file caching, ...

» User Services — things the user manipulates as part of the use of the
system

* Input, Display, Check-in/Check-out, ...

* Ancillary — Things that are not part of the system mission but are
necessary

* Logging, extension hooks, test hooks, ...

Component Representation

Definitions

o ltem:
A manifest and all the files it
directly references.

« Component:
An item and all the items it
references.

file1.2.cs

mod1.3.mod

file2.1.cs

—» program1.2.prg

system1.3.sys

file3.3 doc

mod2.1.mod

filed.1.cs

——» program2.1.prg
-

Item Manifest files contain:

- a brief summary

- a list of keywords

- a list of references to
lower level components
and files.

fileb.1.cs

mod3.2.mod

file6.2.cs

file7.1.doc

New versions caused by change in file F2:

* F2.2is the new version of file F2.1

s M2.2 is new version of module manifest M2.1, resulting from
referring to new version of F2. Note that it still refers to the same
files, F1.3 and F3.2 as M2.1

+ Module M1.2 is new version of M1.1 resulting from referring to new
version, M2.2 It still refers to F4.1.

¢ The RI for Program P1 has not decided to use the new version of
M1 yet.

RI for a module may link a new version of her manifest to any file or
lower level manifest. The Rl may NOT link a higher level manifest to
the new version. That is allowed only by the RI for the higher level
module.

The versioning of M1.2 is open — indicated by dashed lines — meaning
that its RI may change links in that manifest without generating a new
version.

However, M1.2 may not be checked-out for modification until its
versioning is closed. Also, it may only be a part of a test configuration
that does not have modules linking to it, until its versioning is closed.

Manifests and Files: \

Manifests are XML files that define
Systems, Programs, and Modules, I
simply by linking to lower level :
manifests and files. Files are shown |
with hatched pattern, manifests have a I
solid background. —[

New Versions

Versioning Concept

Older versions:

Older versions are retained in the Repository. This supports two critical
activities:

« Developers can access complete configurations for older products
that are still in service to provide support for customers.

« A configuration can be easily rolled back should an earlier change
prove to be incorrect or lead to other problems in the developing
system.

S11

P1.1

M1.1 M3.1

All links are dependency relationships. \
Thus, Both modules M2.1 and M2.2
depend on file F1.3. If two modules El*h M2.2

have no dependency on each other,
they are not linked.

M2.1

Note that the Repository need make no
distinction between Systems,
Programs, and Modules. That is
simply a developer's design distinction.

F2.2

F1.3

F21 F32 F4.1 F52

Peer-to-Peer

= Distribution of parts that cooperate on a mission by
sending each other commands and messages.

o Parts may or may not be identical, but probably have identical
layered system services

o Usually part of a collaboration system
o May have a “distinguished” peer

o Development attempts to provide one set of core services and
build peer personalization on top of that

= Example:

o Software Matrix, Gosh M.S. Thesis,
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/soft
warematrix.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/softwarematrix.htm

Service Oriented

» System composed of
e Set of autonomous services

 Software glue that binds the services together

* Focus on
 Reliability, availability, composability

* Example:

* VRTS — CSE784 Project, Fall 2008,
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.h
tm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.htm

Agent-Based

= System uses Software Agents
o Semi-autonomous, mobile, task oriented software entities
o May be scheduled

o Provide scriptable user specific services
* Collect information from a large set of data
* Perform analyses on changing baseline and report
* Conduct specific tests
= Make narrowly specified modifications to baseline

= Example:

o CSE681 Project #5, summer 2009,
http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Project
s/Pr5Su09.doc

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Project #4

= Peer-to-peer?
o May initiate analyses from client
o May schedule analyses and notify users of results

= Collaborative?

o QA, Management, Developers, and Architects all care about the
analyses and results.

o How do we overtly support collaboration?

= Service Oriented?
o Communication and Notification are probably service-based
= |ayered?

o |f we extend by sending libraries to remote machines to be run from
tool holster, we may want to have the holster provide execution
services — a sandbox — to enhance security

= Agent-based?

o We probably want to schedule tests, tailored to specific users, e.g.
QA, team lead, architect.

The End

