
Enterprise Architecture

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2015

References

•Beautiful Architecture, O’Reilly, 2009

• Will become required reading for this course

• Interesting examples:

• Massive Multi-player on-line games

• Facebook data management

• Surfing business data like surfing web pages using REST

•Beyond Software Architectue, Luke Hohmann,
Addison-Wesley, 2003

• Places software architecture in the context of a business
process (concept, plan, marketing, development,
deployment, extension, security)

Need for Architecture

•Driven by:

• System complexity

• Performance requirements

• Need for flexibility

• To accommodate changing business objectives

• To replace aging technologies

• To cooperate with other applications

• Security

• Visibility and mutability based on authorization

• May need audits to prove compliance with regulations

Needs driven by Size

• Longevity

• Enterprise system are expensive to build and deploy.

• We want them to last a long time to get significant return
on investment.

•Stability:

• We want the core system to remain stable as
development proceeds and later as maintenance adds
new features

First Questions (BA)

•The first questions an architect asks are not about
functionality:
• Who are the stakeholders?

• On what platform will the system be built?

• How many concurrent users?
• Load model

• latency

• How secure does the system need to be?
• Intranet or internet?

• How sensitive is the information?

• How scalable must the system be?
• Orders of magnitude?

Goals of an Architecture (BA)

•Build systems that:

• Satisfy project goals

• Are:

• friendly and responsive to the user

• free of critical errors

• maintainable

• easy to install

• reliable

• Communicate in standard ways

Architecture Quality Factors

• Usability

• Free of critical errors

• Metaphors

• Performance

• Security

• Safe

• Traceable

• Scalability

• Add more functions

• Add more users

• Add more data

• Maintainability

• Changeable

• Stable

Software Collaboration Federation

Usability
Software Collaboration Federation (SCF)

•Users don’t wait for anything
• All tasks are asynchronous

•Simple models
• Everything is immutable

• Only control is check-in

• Concurrency models are simple and hidden from user

•All work is task driven:
• Check-in products

• Test code products

• Analyze results

SCF Security

•Use platform-based authentication

• Asp.Net like authentication and roles

•Use secure communication

• WSHttp encrypts transmissions

•Products contain encrypted hash to prevent
tampering

•Message logs support traceability if needed

SCF Scalability

•Test Harness (prime load – test execution)
• Concurrent test suites use available cores

• File caching avoids unnecessary network traffic

• Tests are independent so very little is required to support
load-balancing of multiple Test Harness servers

•Repository (prime load – builds)
• Check-ins are independent so each can run on own

thread, using available cores for building

• File caching avoids unnecessary network traffic

• Fine-grained availability is not important, so can host on
multiple servers, synchronized at night.

SCF Maintainability

•Test Harness:

• Functions are configuration, testing, reporting,
notification, and communication

• Test development is a client activity

• Notification can be supported by Test Harness but implemented by tests,
e.g., tests use T.H. notification facilities to report to client.

• These are all cohesive, easily encapsulated, easy to
change without breaking other parts

• Only configuration and reporting are likely to change

• Functions are conceptually simple, and so, likely to be
stable and free of critical errors

SCF Maintainability

•Repository:

• Functions are check-in, versioning, metadata
management, building, publishing, and communication.

• Check-in and versioning will use different policies for
Project, Company, and Developer Repositories.

• Should make these rule-based. How?

• These are all cohesive, easily encapsulated, and
independent, so easy to change without breaking other
parts.

• Check-in and Versioning are conceptually the most
complicated parts of SCF, and so will need a lot of
attention.

SCF Maintainability

•Client:

• Functions are check-in, building tests and Test Suites,
reviewing results and logs, processing notifications, and
communication.

• Users will want to configure Client UI to support their
own work activities.

• Could make part of the UI a web portal like construct that will allow
users to paste gadgets into portal regions, e.g., team test history for
month, work calendar.

• Creating and using Queries into test data need to be flexible, language
driven, and invocable by name and scheduled.

• Clients will be central to running SCF, so must have core
functionality running early.

End of Presentation

