Comparison

of
C#, Java, and C++

Jim Fawcett
CSE681 — Software Modeling and analysis
Fall 2017

All Three are Important

e C++ and Java have huge installed bases.

* C++ provides almost complete control over the allocation of resources and
execution behavior of programs.

 Java has a very active user community and open source code base.

e C#is the dominant .Net language.

 C#, a managed language, is simpler than C++, takes over control of memory
resources and manages the execution of programs.

» C#is essentially a Java clone with some syntactical and library differences.

e CSE681 — Software Modeling and Analysis
* Focuses almost exclusively on C# and .Net.

* CSE687 — Object Oriented Design:
* Focuses almost exclusively on C++ and the Standard Library.

C# Language

e Looks a lot like Java.

* A strong similarity between:
* Java Virtual Machine & .Net Common Language Runtime (CLR)
* Java bytecodes & .Net Intermediate Language
* Java packages & CLR components and assemblies
* Both have Just In Time (JIT) compilers
* Both support reflection, used to obtain class information at run time

* Both languages support generics (not as useful as C++ templates)

e Differences:

* Java and C# do have significant differences
* C# has most of the operators and keywords of C++
* C# code supports attributes — tagged metadata, Java uses annotations
* C# provides deep access to the Windows platform through Framework Class Libraries (FCL)

* Java supports network programming and GUI development on many platforms

C# Hello World Program

using System;

namespace HelloWorld

{
class Chello
{
string Title(string s)
{
int len = s.Length;
string underline = new string('=',len+2);
string temp = "\n " + s + "\n" + underline;
return temp;
}
string SayHello()
{
return "Hello World!";
}
[STAThread]
static void Main(string[] args)
{
Chello ch = new Chello();
Console.Write(ch.Title("HelloWorld Demonstration™));
Console.Write("\n\n {0©}\n\n",ch.SayHello());
}
}

Differences Between C# and C++

* In C# there are no global functions. Everything is a class.
* Main(string args[]) is a static member function of a class.

* The C# class libraries are like Java Packages, not like the C
and C++ Standard Libraries.

* System, System.Drawing, System.Runtime.Remoting, System.Text,
System.Web

* C# class hierarchy is rooted in a single “Object” class

* CH# does not separate class declaration and member function
definitions.

 Every function definition is inline in the class declaration — like the
Java structure.

* There are no header files.
* Instead of #include, C# uses using statements:

* using System;
 using System.ComponentModel;

Differences between C# and C++

* The C# object model is very different from the C++
object model.

e |[lustrated on the next slide

e C# supports only single inheritence of implementation,
but multiple inheritance of interfaces

* C# does not support use of pointers, only references,
except in “unsafe” code.

* Use of a C# variable before initialization is a compile-
time error.

C# Object Model

Reference Type

value type

handle on Stack
on stack

bool, byte, char,
decimal, double,
float, int, long, sbyte,
short, struct, uint,
ulong, ushort

Body on Heap

Example:
intx =3;

object, string,
user defined type

Example:
myClass mc = new myClass(args);
string myStr = "this is some text";

Comparison of Object Models

» C++ Object Model e .Net Object Model
* All objects share a rich memory model: * More Spartan memory model:
* Static, stack, and heap * Value types are static and stack-based

: . only.
* Rich object life-time model:

» Reference types (all user defined types

* Static objects live for the duration of the and library types) live on the managed

program. heap.
* Objects on stack live within a scope defined e e Tninictc life-time model:
by { and }. '

])]) * All reference types are garbage collected.
* Objects on heap live at the designer’s

discretion. * That’s the good news.
* Semantics based on a deep copy model. * That’s the bad news.
* That’s the good news. * Semantics based on a shallow reference
model.

* That’s the bad news.
* For compilation, client’s use their server’s

* For compilation, clients carry their server’s type Tt

information via headers.

" * That is great news.
* That’s definitely bad news.

* |tis this property that makes .Net

* But it has a work-around, e.g., design to components so simple.

interface not implementation. Use object
factories.

C# Primitive Types

.Net Base Class

System.Byte
System.SByte
System.Int16
System.Int32
System.Int64
System.UInt16
System.UInt32
System.UInt64
System.Single
System.Double
System.Object
System.Char
System.String
System.Decimal

System.Boolean

C# Types

byte
sbyte
short
int
long
ushort
uint
ulong
float
double
object
char
string
decimal

bool

C# Object Type

* Object is the root class of the C# library

* Object’s members:
* public Object();
* public virtual Boolean Equals(Object obj);
* Returns true if obj and invoker handles point to the same body.
* public virtual Int32 GetHashCode();
* Return value identifies object instance.
* public Type GetType();
* Type object supports RTTI — see next page
* public virtual String ToString();
* Returns namespace.name
» protected virtual void Finalize();
* Called to free allocated resources before object is garbage collected.
» protected Object MemberwiseClone();
* Performs shallow copy

* To have your class instances perform deep copies you need to implement the
ICloneable interface, andccccoevvveveeeeiceveccnecnns

Common Type System

* Reference Types
* Classes

* methods
* fields

* properties
* Events

* Member adornments:
public, protected, private, abstract, static

* Interfaces

* Class can inherit more than one

* Must implement each base interface

* Delegates

* |nstances used for notifications

Common Type System

*Value Types
* Primitive types
e See slide 10
* Structures

* methods
* fields

* properties
* Events

* Member adornments:
public, protected, private, abstract, static

e Enumerations

Type Class

You get type object this way:
* Type t = myObj.GetType();

* Type t = Type.GetType(“myObj”);

An instance of Type is a container
for reflection information, and
has many methods to use that
information.

Some of Type’s members:

IsAbstract

IsArray

IsClass

IsComObiject

ISEnum

Isinterface

IsPrimitive

IsSealed

IsValueType

InvokeMember()

GetType() returns Type Object
FindMembers() returns Memberinfo array
GetEvents() returns Eventinfo array
GetFields()

GetMethods()

Getlnterfaces():

GetMembers():

GetProperties()

More Differences

* The CLR defines a delegate type, used for callbacks.

e event is a keyword in all CLR languages.

* Events modify the delegate interface, eliminating actions by a subscriber that might affect other
subscribers.

* All memory allocations are subject to garbage collection — you don’t call delete.
e There are no #includes in C#. There are in both managed and unmanaged C++.

* In C# all class data members are primitive types or C# references. In managed
C++ all class data members are either primitive value types, C++ references, or
C++ pointers. Nothing else is allowed.

* The CLR provides directory services, and remoting. The Standard C++ Library
provides neither of these, although they are relatively easy to provide yourself.

Delegates

* Delegates are used for callbacks:
* In response to some event they invoke one or more functions supplied to them.

* Library code that generates an event will define a delegate for application developers
to use — the developer defines application specific processing that needs to occur in
response to an event generated by the library code.

* A delegate defines one specific function signature to use:

public delegate rtnType delFun(args..);

This declares a new type, delFun whose instances can invoke functions with that signature.

* The developer supplies functions this way:
libClass.delFun myDel = new libClass.delFun(myFun);

This declares a new instance, myDel, of the delFun type.

Events

Events are specialized delegates that are declared and invoked by a class that wants to publish notifications.

The event handlers are functions created by an event subscriber and given to the delegate.

Many C# events use the specialized delegate event handler of the form:

public delegate void evDelegate(
object sender, userEventArgs eArgs

I

userEventArgs is a subscriber defined class, derived from System.EventArgs. You usually provide it with a constructor to
allow you to specify information for the event to use.

The event is then declared by the publisher as:
public event evDelegate evt;

Either publisher or subscriber has to create a delegate object, eveDel, and pass it to the other participant.

The event is invoked by the publisher this way:

evDel(
this, new userEventArgs(arg)

)

The subscriber adds an event handler function, myOnEvent, to the event delegate this way:

Publisher.evDelegate evDel +=
new Publisher.evDelegate(myOnEvent);

Threads

A C#t thread is created with the statement:

Thread thrd = new Thread();

System.Threading declares a delegate, named ThreadStart, used to define the
thread’s processing.

* ThreadStart accepts functions that take no arguments and have void return type.

You define a processing class, MyProc that uses constructor arguments or
member functions to supply whatever parameters the thread processing needs.

To start the thread you simply do this:

MyProc myProc = new myProc(args, ..);
Thread thrd = new Thread();

ThreadStart thrdProc = new ThreadStart(myProc);
thrd.Start(thrdProc);

Thread Synchronization

* The simplest way to provide mutually exclusive access to an object shared
between threads is to use lock:

lock(someObject) {
// do some processing on
// someObject

}

While a thread is processing the code inside the lock statement no other thread
is allowed to enter the lock.

Assemblies

* An assembly is a versioned, self-describing binary (dll or exe)
* An assembly is the unit of deployment in .Net

* An assembly is one or more files that contain:
* A Manifest

* Documents each file in the assembly
* Establishes the assembly version
e Documents external assemblies referenced
* Type metadata
* Describes all the methods, properties, fields, and events in each module in the assembly

* MSIL code

* Platform independent intermediate code
« JIT transforms IL into platform specific code

* Optional resources

* Bitmaps, string resources, ...

Assembly Structure

Single File Assembly Multiple File Assembly
myProject.exe mylLibrary
lib1.dll lib2.dll
. > : - Type
Manifest Manifest Metadata
Type Type
Metadata Metadata MSIL code
MSIL code MSIL code
optional lib3.dll
resources '
) > Type
lib.bmp / Metadata
optional MSIL code
resources

* Visual Studio does most of the work in configuring an assembly for
you.

Metadata in demoFiles.exe

isual C# .NET [design] - Test.cs =@

Ble Edit Yiew Project Buld Debug Iools Window Help ! Decendences Heg S d T EeS
5~ = % R o-o- B » Debug - ds Tables'programmaticTable’] - | 1 pE 3R B3 -
(B B a2 2| 4% 4 I L= N RIS
File View Help
%‘ Obiect Brawser | GetDrectoryhiame Method [T @ C\SUCSEBSTvcodehdemoFiles\bin Debug\demoFiles eve
% |§qdamanas.rest ~ b MANIFEST lest_getFiles(string[] args)
= =/ demoFiles [& Solution 'demoFiles (1 project)
2 I Assemblyinfo £ & demoFiles
5 using System; " -
2 P .class public auto ansi beforefieldiit El- & References
using System. IO o _ssm: piivate class [mscorlb]System Rieflection Assembly - o system
using System.Reflection; B ctor: void(sting) 3 System.Data
- B GefFiles : shinglll) =3 System. XML
O namespace dewofiles -l GetModules : dlass [mscorlib]System Fieflection. Module{][) App.ico
{ B GetTypes : class [mscorib]S ystem. Type[](] D AssemblyInfo.cs R
o class Title B GetFiles [8) Getassemblylnfo.cs =3
H o B class public auto ansi beforefieldiit [£] GetFiles.cs @
internal static void Me B ctor: void]) [] Test.cs
¢ B files : stringf](stiing) =
. c
Console.Urite{™\n {C v B show : void(sting[boal) =
String tewp = new St - Test o
Console.Urice [™n (0] B class private auto ansi beforefieldinit §_
Conzose. Testetine 1 - eI 17
L - sin : voidstring] |-assembly extern mscoriib
’) B Test_Gethissemblylnfo : voidisting) ssenbly extern mscorl
internal starde void M BN Test_GetFiles : vaid(string[l) ¢
{ i Tite - : < -publickeytoken = (B7 7A@ 5C 56 19 34 EO 89) oz
Console.Write (™o ((P class privale auto ansi beforefieldinit o DECEERIIED
3 T = 3 .
STELNG Tewp - eV Sty | ctor: void] _assembly demoFiles
Console.Urite(™n (0} - Major: void(sting)
r ¥ B Minor: void(sting) .custom instance void [mscorlib]System.Reflection.AssenblyKeyNameAttribute:
o .custom instance woid [mscorlib]System.Reflection.AssemblyKeyFileattribute:
/40 .custom instance void [mscorlib]System.Reflection.AssemblyDelaySignAttribut
class Test .custom instance woid [mscorlib]System.Reflection.AssemblyTrademarkAttribui
1 .custom instance woid [mscorlib]System.Reflection.AssemblyCopyrightAttribui
//————< test finding f:|.assembly demoFiles .custom ?nstance uu?d [mscurl?b]system.REF]ECt?nn.nssenblyl’rnductnttr?bute:
[.custom instance wvoid [mscorlib]System.Reflection.AssenblyConpanyAttribute:
internal scatic void T4 ver 1:0:976:37339 .custom instance woid [mscorlib]System.Reflection.fssemblyGonfigurationntts
3 .custom instance woid [mscorlib]System.Reflection.fssemblyDescriptionAttrit
t .custon instance void [mscorlib]System_Reflection.AssenblyTitleAttribute::
GetFiles gf = new GetFIles(17 /¢ --— The following custom attribute is added automatically, do not uncomr
foresch(string pattern in acgs) 7/ .custom instance veid [mscorlib]System.Diagnostics.DebuggableAttribute:
{ i
string text = "Searching for files matching command line| -Nash algorithm Bx00668804
text += pattern: b ver 1:0:976:37339
Title.Minor (text): "nodule demoFiles.exe
| £/ MUID: {3C3D5238-077A-47DF-913A-0A2F OBBB7E20}
d i b. ox
.subsystem 8x00000083
Find Symbal Resuks - 1 match found file alignment 512
GetDirectoryMame{string) {System, 10.Path) .corflags B6x00006001
(& C\SUNCSEGR1\codeidemoFiles Test.cs (71, 27) ¥/ Image base: 8x83a78608
< | _’lJ

TaskList | B) Output g Find Symbel Results | T2 Index Results for Path class, all members |

| Ready I |[tnes Col 7 ch? |][]

iflistart H] & 5 R 50 ”“ [Fcisncs... | sesst | B sticky o, microsoft .| 7 casuncs... |[7 mantrest W%ngﬁdﬂﬂ@%@

9:38 M

Mdemuﬁ\esu.l [Flcmp.E2E

Versioning

* Assemblies can be public or private:

A private assembly is used only by one executable, and no
version information is checked at loadtime.

* Private assemblies are contained in the project directory or, if there is a config file, in a
subdirectory of the project directory.

* A shared assembly is used by more than one executable, and is
loaded only if the version number is compatible with the using
executable.

» Shared assemblies reside in the Global Assembly Cache (GAC), a specific directory.
* Version compatibility rules can be configured by the user.
* Since no registry entries are made for the assembly, each user

executable can attach to its own version of the assembly. This
is called side-by-side execution by Microsoft.

* A shared assembly is created from a private assembly, using
one of Microsoft’s utilities provided for that purpose.

Useful Interfaces

* [IComparable - method
* Int CompareTo(object obj);

* Return:
* Negative =>less
» Zero => equal

* Positive => greater

* |Cloneable - method
 object clone();

* [Collection — properties and method
* int count { get; }
* bool IsSynchronized { get; }
* object SyncRoot { get; }
* void CopyTo(Array array, int index);

Useful Interfaces

 [Enumerable - method

 System.Collections.I[Enumerator GetEnumerator();

* [Enumerator — property and methods

* object Current { get; }
* bool MoveNext();

* void Reset();

Useful Interfaces

* |[Dictionary

bool IsFixedSize { get; }

bool IsReadOnly { get; }

object this[object key] { get; set; }
|Collection keys { get; }

|Collection values { get; }

void Add(object key, object value);
void Clear();

bool Contains(object key);

e |List

bool IsFixedSize { get; }

bool IsReadOnly { get; }

object this[object key] { get; set; }
void Add(object key, object value);
void Clear();

bool Contains(object key);

int IndexOf(object value);

void Insert(int index, object value);
void Remove(object value);

void RemoveAt(int index);

System.Collections.IDictionaryEnumerator GetEnumerator();

void Remove(object key);

C# Libraries

System

* Array, Attribute, Console, Convert, Delegate, Enum, Environment, EventArgs, EventHandler,
Exception, Math, MTAThreadAttribute, Object, Random, STAThreadAttribute, String, Type

System.Collections
* Arraylist, HashTable, Queue, SortedList, Stack

System.Collections.Specialized

* ListDictionary, StringCollection, StringDictionary

System.ComponentModel
* Used to create components and controls

* Used by WinForms

System.ComponentModel.Design.Serialization

* Used to make state of an object persistant

System.Data
* Encapsulates use of ADO.NET

More C# Libraries

* System.Drawing — GDI+ support
* System.Drawing.Drawing2D — special effects
» System.Drawing.Imaging — support for .jpg, .gif files

» System.Drawing.Printing — settings like margins, resolution

» System.Net — support for HTTP, DNS, basic sockets

* System.Net.sockets — sockets details

» System.Reflection

* view application’s metadata including RTTI

* System.Runtime.lnteropServices
* Access COM objects and Win32 API

Remoting Libraries

* System.Runtime.Remoting
» System.Runtime.Remoting.Activation
* Activate remote objects
e System.Runtime.Remoting.Channels
* Sets up channel sinks and sources for remote objects
* System.Runtime.Remoting.Channels.HTTP
* Uses SOAP protocol to communicate with remote objects
* System.Runtime.Remoting.Channels.TCP
* Uses binary transmission over sockets
* System.Runtime.Remoting.Contexts
* Set threading and security contexts for remoting
* System.Runtime.Remoting.Messaging
* Classes to handle message passing through message sinks
* System.Runtime.Remoting.Meta data
* Customize HTTP SoapAction type output and XML Namespace URL
* System.Runtime.Remoting.Proxies

* System.Runtime.Remoting.Services

You must be joking — More Libraries!

* System.Runtime.Serialization
* System.Runtime.Serialization.Formatters

* System.Runtime.Serialization.Formatters.Soap

* System.Security

* System.ServiceProcess

* Create windows services that run as Daemons
» System.Text.RegularExpressions

e System.Threading

* AutoResetEvent, Monitor, Mutex, ReaderWriterLock, Thread, Timeout, Timer,
WaitHandle

* Delegates: ThreadStart, TimerCallBack, WaitCallBack

* System.Timers

* Fire events at timed intervals, day, week, or month

Web Libraries

* System.Web
* System.Web.Hosting

¢ Communicate with IIS and ISAPI run-time

System.Web.Mail

System.Web.Security

» cookies, web authentication, Passport

System.Web.Services — close ties to ASP.NET
* System.Web.Services.Description
* System.Web.Services.Discovery
* System.Web.Services.Protocol — raw HTTP and SOAP requests

* System.Web.SessionState — maintain state between page requests

System.Web.UIl — access to WebForms

WinForms and XML Libraries

* System.Windows.Forms — Forms based GUI design

e System.Xml - XML DOM
* System.Xml.Schema
* Authenticate XML structure
* System.Xml.Serialization
* Serialize to XML
* System.Xml.XPath
* Navigate XSL
e System.Xml.Xsl
* Support for XSL — XML stylesheets

So How do we Learn all this stuff!

ClassView -> Class Browser -> Help

to the rescue!

Language Comparison

e Standard C++

Is an ANSI and ISO standard.
Has a standard library.
Universally available:

* Windows, UNIX, MAC
Well known:

* Large developer base.

* Lots of books and articles.
Programming models supported:

* Objects

* Procedural

* Generic

Separation of Interface from
Implementation:

* Syntactically excellent

* Implementation is separate from class
declaration.

* Semantically poor

* See object model comparison.

* NetC#

Is an ECMA and ISO standard.
Has defined an ECMA library.
Mono project porting to UNIX

Relatively new, but popular in Windows
ecosystem

* Large developer base.

* Lots of books and articles.
Programming models supported:

* Objects

* Generic

Separation of Interface from
Implementation:

* Syntactically poor

* Implementation forced in class
declaration.

* Semantically excellent

* See object model comparison.

End of Presentation

