
Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -1- 8/18/2013

CSE 681: SOFTWARE MODELING & ANALYSIS

PROJECT # 3

“REMOTE TEST CONFIGURE TOOL”

OPERATIONAL CONCEPT DOCUMENT

VERSION 1.0

July 4, 2007

Syracuse University

-- Aniruddha Gore

SUID#909876627

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -2- 8/18/2013

Table of Contents

1. Executive Summary .. 4

2. Introduction ... 5

3. Project Obligations ... 6

4. Remote Test Configuration Tool (RTCT) Deployment .. 6

5. Top Level Architecture ... 8
5.1 User Input/Output ... 8
5.2 Network Resources .. 9
5.3 Build Processor .. 9
5.4 Remote Terminal File System Services .. 9
5.5 Test Harness ... 9
5.6 File System ... 9
5.7 Remote Test Configure Tool .. 10

6. Data Flow in RTCT .. 11
6.1 Process 1: Build Libraries .. 11
6.2 Process 2: Create XML Configuration File ... 11
6.3 Process 3: Copy Files to Server .. 11
6.4 Process 4: Submit Configuration File to Test Server .. 11
6.5 Process 5: Invoke Test Harness ... 11
6.6 Process 6: Display ... 13

7. Use Cases .. 13
7.1 Principal Users ... 13

7.1.1 Software Professionals .. 13
7.1.2 Non-Technical End Users ... 15
7.1.3 Users from Academia ... 16

7.2 Use Case Diagram ... 16
7.3 Use Cases ... 18

7.3.1 Add Test Files .. 18
7.3.2 Remove File/s ... 18
7.3.3 Save Test Suite ... 18
7.3.4 Load Existing Suite .. 18
7.3.5 Delete Test Suite ... 18
7.3.6 Submit Tests ... 18
7.3.7 Add to Suite .. 18
7.3.8 Reload Suite ... 18
7.3.9 View Status Queue ... 18
7.3.10 View Test Status .. 18
7.3.11 Abort Tests ... 19
7.3.12 Retrieve Result Log .. 19
7.3.13 Add Client ... 19

8. User Interface Views .. 20

9. Issue Analyses ... 27
9.1 Performance Issues .. 27
9.2 Test Server Issues ... 29
9.3 Data Transfer Security Issues .. 31
9.4 Source Code Build Issues .. 32
9.5 Test Result Log Issues .. 32

10. Modular Architecture .. 34
10.1 Layers .. 34

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -3- 8/18/2013

10.2 XML Encoder Module ... 35
10.3 Message Mailbox Module ... 35
10.4 Send Queue Module ... 35
10.5 Communications Module ... 35
10.6 XML Decoder Module .. 35
10.7 Command/Message Handler Module .. 35
10.8 Client Executive Module .. 35
10.9 GUI Module ... 36
10.10 Build Module .. 36
10.11 Server Executive/GUI Module ... 36
10.12 Configuration Loader Module .. 36
10.13 Test Harness Module ... 36
10.14 Working of ‘Client’ Module ... 36
10.15 Working of ‘Server’ Module .. 38

11. Activities .. 41
11.1 Master RTCT Activities .. 41
11.2 Server RTCT Activities .. 43

12. Future Release: RTCT over ‘the Internet’ .. 45

Table of Figures

Figure 1: Basic RTCT Activities ………………………………………………………………………………... 5

Figure 2: Block Diagram Showing RTCT Deployment …………………………………………………... 7

Figure 3: Context Diagram of Remote Test Configure Tool …………………………………………... 8

Figure 4: Top Level Data Flow Diagram for Remote Test Configure Tool ………………………… 12

Figure 5: Use Cases for Remote Test Configure Tool …………….…………………………….…….. 17

Figure 6: Module Diagram for ‘Client’ …………….………………………………………………………… 36

Figure 7: Module Diagram for ‘Server’ ………….…………………………………………………………. 38

Figure 8: Master RTCT Activity Diagram ………….………………………………………………………. 41

Figure 9: Server RTCT Activity Diagram ………….………………………………………………………. 43

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -4- 8/18/2013

1. Executive Summary

‘Remote Test Configure Tool’ is a very useful tool in the development process of a large

software project spread over multiple locations in an organization. It facilitates remote
evaluation of a large project (or a part thereof) by configuring tests on a remote test server

and retrieving test results after test execution is completed.

Remote Test Configure Tool will work in an environment with a few members viz. User (for
input/output), Remote Terminal File System Services, Build Processor, Test Harness and

Network Resources (for communication). Modular architecture of the tool is designed with
concept of layers in mind: Presentation, Data Storage, Communications and Processing. The

tool is developed as ‘Client’ Module and ‘Server’ Module; major part of both these modules is

actually a reusable structure composed of:

 XML Encoder: encodes message/command in XML format using custom XML tags
 XML Decoder: extracts information from a XML based message string

 Message Mailbox: ensures safe transmission of each message to receiver
 Command/Message Handler: interprets extracted information and act upon it

 Send Queue: stores a small set of messages to be sent
 Communications: transmits data from sender to receiver

‘Message Mailbox’ and ‘Send Queue’ modules are main members of ‘Data Storage’ layer and
plays very important role as working of tool involves extensive message passing.

Principal users of Test Harness will be software professionals but not excluding non-technical

end users and users from academia. All possible interactions between the user and application
are facilitated by the proposed interface, of which two cases namely ‘Add to Suite’ and ‘Abort

Tests’ may be difficult to implement as they may be requested while application is already
running.

Ten important issues are identified and potential solutions are suggested. Of these ten issues,
three are found to be critical; implementation decisions are concluded for each issue which

will help make Remote Test Configure Tool an efficient application. The three critical issues
are:

 Tool Performance under heavy loads

 Ensuring safety and integrity of messages being transferred across network
 Overwriting of system files on test server

Summary of conclusions of all important aspects bolsters successful implementation of
Remote Test Configure Tool within a considerably short period of time and with available

resources.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -5- 8/18/2013

2. Introduction

‘Testing’ phase is considered to be an important phase in Software Development Life Cycle

due to following reasons:

a) It is the phase where value delivery to customer is ensured
b) Getting involved into testing at earlier stages of development reduces the risk of getting

into critical problems at the end, thereby cost benefiting since cost of fixing a defect is
more at the later stages

Applications like ‘Test Harness’ facilitates such testing needs but with increasing growth of

(software) project sizes, customer requirements and expected application accuracy, large

software projects are being developed by different groups of developers and architects.
Depending on availability of skills & resources and time constraints these groups are often

alienated and thus have to coordinate with each other remotely to meet with customer
specifications. ‘Remote Test Configure Tool’ comes to rescue at the testing front in such

situations so that software tests can be configured, scheduled and performed remotely
independent of from where they are being invoked and where the test files/libraries are

located.

Figure 1 below describes basic activities performed by the Remote Test Configure Tool. The

purpose of this activity diagram is to give the reader an abstract idea of what activities the
tool will perform at the client’s end.

Get test files and

destination directory

from user

Create XML test

configuration file

Copy files to

specified directory

Submit configuration

file to test server
Display Test Results

And Retrieve Test Log

Basic RTCT Activities

Start End

Invoke

 Test Harness

Figure 1: Basic RTCT Activities

As shown in the figure, tool starts with invoking a user interface prompting user to select test
files. It is to be noted here that user will be able to select the test files by browsing his/her

local client terminal, a remote client terminal or the test server. Remote Test Configure Tool
then copies all the specified files to the directory and creates an XML file with these details

(path to test directory and list of test libraries) which is then submitted to the test server.
Creation and submission of XML file is shown between same pair of synchronizing bars as

copying of test files to server, to indicate that these two activities may take place in any order
or in parallel. Test server selects one test configuration at a time (from many of them

submitted by the clients on the network) based on a specific priority mechanism and invokes

Test Harness to perform tests on that selected configuration. Test Harness is invoked only
after the configuration file has been submitted to test server and all the test libraries have

been copied to destination directory on server. After test server has performed all the tests,
test results are displayed to user and test result log is retrieved as its last activity before

terminating.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -6- 8/18/2013

3. Project Obligations

‘Remote Test Configure Tool’ will be cultivated as an efficient and user friendly tool to support

remote configuration of tests for modules (which are part of a large project being developed)
concomitantly as they are developed.

The main specifications laid for this project are to:

 Establish communication between CONFIGURE program running on all terminals of the

local network using either .NET Sockets or .NET Remoting
 Provide a Graphical User Interface to browse test files on local and remote terminals

 Build any selected source code into libraries

 Create a XML based test configuration files and submit it to the test server
 Retrieve test result log from server

4. Remote Test Configuration Tool (RTCT) Deployment

Section 2 (Introduction) discussed basic activities of RTCT. This section describes how RTCT

will be deployed on machines so that it may be used in an actual network setting for test
configuration purposes. Figure 2 below depicts a simple block diagram showing deployment of

RTCT in a typical local network containing three clients viz. Terminal # 1, Terminal # 2,

Terminal # 3 and a test server viz. Server. All clients will be connected to the test server
through a communication channel which may be implemented using .NET Sockets or .NET

Remoting. The three terminals will also be connected to each other but it’s not shown here for
the sake of clarity.

RTCT will be installed on each of the four machines with an additional mechanism installed on

the test server along with RTCT. This additional add-on is required at the test server because
eventually it is going to be the test server which will start Test Harness and log results. As

mentioned earlier, clients may also communicate with each other and thus reflect a client-

server behavior while in communication. It is always convenient to express such interactions
with the client-server terminology but in this case the term ‘server’ is very likely to be

confused with test server on which Test Harness resides. To avoid such situations of
ambiguity, a terminology is adopted which will be used in the rest of the document:

Terminology: - This terminology is adopted from ‘Digital Electronics’ where ‘Master-Slave’

flip-flops are so called because of the difference in direction of control/data flow.
 Server RTCT: RTCT installed at the test server where tests will be performed

 Master RTCT: RTCT installed at the client which sends a message/command to other

client or the Server RTCT
 Slave RTCT: RTCT installed at the client which receives message/command from

either a Master RTCT or the Server RTCT

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -7- 8/18/2013

Server

RTCT

Remote

Terminal # 2

RTCT

Remote

Terminal # 1

R

T

C

T

Remote

Terminal # 3

R

T

C

T

C
om

m
un

ic
at

io
n

C
ha

nn
el C

om
m

unication C
hannel

C
o

m
m

u
n

ic
a

ti
o

n
 C

h
a

n
n

e
l

Legends

● RTCT: Remote Test Configure Tool

● Server: Machine on network where tests will be performed

Test Harness

Remote Test Configure Tool Deployment

Figure 2: Block Diagram Showing RTCT Deployment

What follows explains how a user can perform tests using RTCT. Suppose a user is on
Terminal # 1 and wants to perform tests which involve files on Terminal # 2. Now the user

will start the RTCT installed at Terminal # 1 and will browse local test files and files at some
remote terminal say Terminal # 2. After selecting test files, RTCT at Terminal # 1 may find

some source code on Terminal # 2 which is selected and needs to be built into library. Thus it

instructs Terminal # 2 to do so. In this case Terminal # 1 act as Master RTCT and Terminal #
2 acts as Slave RTCT. After all files are built into libraries, Master RTCT will create a XML file

with all test configuration details required by the Server RTCT. Master and Slave RTCTs will
copy files to the test directory on server. Test server now picks up this XML configuration file

when it finds it appropriate to execute tests. Server RTCT then starts Test Harness service
with the add-on provided to it (as mentioned above) and initiates tests. After all tests

complete, results are displayed to Master RTCT GUI and Master RTCT can also retrieve the
test result log. It should be noted that Server RTCT can very well become a Master RTCT for a

test when Server Administrator (user in this case) starts this tool at the test server.

Conclusion: RTCT must be installed on all machines which are to be the part of testing

system. GUI should provide local and remote browsing facilities to user.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -8- 8/18/2013

5. Top Level Architecture

Context of Remote Test Configure Tool (RTCT) will depend a lot on whether the RTCT is a

Server RTCT, Master RTCT or a Slave RTCT; however the discussion here revolves around
context in which it is used by a user. Figure 3 below depicts context¥ of RTCT in a typical

setting wherein user is using the RTCT from a Master RTCT and configures test files located at
both Master RTCT and a Slave RTCT, to be tested at the Server RTCT.

User

Input/Output

Build

Processor

Remote Test Configure Tool

Test File

Names

Display
Messages,
Test Result

Log

Top Level Architecture of RTCT
File System

F
ile

 N
a

m
e

F
ile

 H
a

n
d

le

Network

Resources

L
ib

ra
ry

 (
.d

ll
)

S
o

u
rc

e
 C

o
d

e
 (

.c
s

)

Remote Terminal

File System

Services

Network

Resources

Network

Resources

XML Configuration file,

XML Messages,

Test Files

XML Message,

Test Result Log

Communication

Channel
C

o
m

m
u
n
ica

tio
n

C
h
a
n
n
e
l

C
o
m

m
u
n
ic

a
tio

n

C
h
a
n
n
e
l

Library (.dll)

Source Code (.cs)

X
M

L
 M

e
s
s
a

g
e

s

T
e

s
t
F

ile
s

Framework

Loader

Test Harness

D
ir
e

c
to

ry
 P

a
th

D
y
n

a
m

ic
 L

in
k

L
ib

ra
ri
e

s

XML

Configuration file

XML Messages,

Test Result Log

Figure 3: Context Diagram of Remote Test Configure Tool

The context comprises of mainly seven elements which are described below:

5.1 User Input/Output
User initiates test configuration by interacting with a Graphical User Interface provided by
RTCT. User browses test files located across the network and confirm this files list before

submitting it to RTCT. The RTCT keeps the user informed of status of tests he/she submitted

and display progress/error messages during the tests and test result summary at the end.

¥: Although a Context Diagram has to do with interaction of code being developed with

resources in its environment, ‘Test Harness’ and ‘Remote Terminal File System Services’ are

actually processes but have been included here to convey very clearly how RTCT interacts
with its surroundings. Sticking to the UML conventions, these two processes are enclosed

within a block (and not in a ‘bubble’) to focus the discussion around Remote Test Configure
Tool.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -9- 8/18/2013

5.2 Network Resources
Being capable of configuring tests remotely, Network Resources are vital to RTCT in the

process of test configuration. Network Resources plays the main role of facilitating
communication between Master RTCT, Slave RTCT and the Server RTCT. When the user at a

Master RTCT intends to browse a Slave RTCT (i.e. a remote terminal), the Master RTCT injects

a message into Network Resources which it conveys to requested Slave. It then conveys
remote browsing information to requesting Master RTCT. Network Resources are also

responsible for copying/transfer of XML Test Configuration/XML Message files across the
network; these file transactions mainly include:

 Submitting XML Test Configuration file created at Master RTCT to Test Server
 Copying test files from various terminals across network to Test Server

 Retrieving Test Result Logs from Test Server and copying it to Master RTCT
 Transfer XML Message files between Master, Slave and Server

5.3 Build Processor
Not all modules are built as libraries but Test Harness residing at the test server can load only

Dynamic Link Libraries (DLLs) and thus the test files submitted to the server must all be DLLs.
To relieve code developers (and other users) of this overhead of keeping in mind of compiling

each module in as a library, Remote Test Configure Tool makes use of Build Processor.

Whenever a source code is found among the test files in a configuration, it is submitted to
Build Processor which builds it into library and returns back to the test file bank.

5.4 Remote Terminal File System Services
Remote Terminal File System Services are responsible for communicating with Master RTCT
and Server RTCT and take appropriate action. A user is very likely, in a large software

environment, to browse some remote terminal for test files. As a consequence, files located

at this remote machine will be copied to test server and might require being built into
libraries. All such communications are done by Master RTCT and Server RTCT through XML

Message passing to this particular Slave RTCT. Remote Terminal File System Services are
responsible for this communication as they will be required to receive these XML Message

files, decode them and take actions which were requested in the messages.

5.5 Test Harness
Eventually it’s Test Harness which utilizes work done by Remote Test Configure Tool,
performs tests and returns the results back to Master RTCT through Network Resources. Test

Harness gets directory path where all test files are stored from the XML Test Configuration file
submitted by the many Master RTCTs. Which configuration to load next depends on Server

RTCT, which decides this based on some priority mechanism. Test Harness utilizes services
provided by Framework Loader (not discussed here as RTCT does not directly communicate

with it) to load test libraries. After all test executions complete, results are logged to a text

file.

5.6 File System
File System facilitates services for dealing with files, which is an obligatory task of Remote

Test Configure Tool. A Master RTCT uses File System to create a XML Test Configuration File

with all test configuration details in it to be submitted to test server. Similarly it may receive
XML Messages from Server or Slave RTCT which it will have to decode and act upon.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -10- 8/18/2013

5.7 Remote Test Configure Tool
Remote Test Configure Tool (RTCT) represents all the code being developed. It is the main

workstation which configures the tests on test server. RTCT presents the user with a
Graphical User Interface (GUI) when the tool is started. It communicates with Remote

Terminal File System Services through Network Resources by XML Message passing if a user

happens to browse remote machines. Also RTCT sends XML Configuration File to test server
and receives, decodes and acts upon messages received from server (if any). While in

progress for configuring a test on server RTCT is also (conditionally) required to interact with
Build Processor for purposes described earlier.

Conclusion: Remote Test Configure Tool can be implemented as a physical unit which

accomplishes test configuration by simple data transfers with its environment consisting of
seven members. The RTCT receives required inputs from User Input/Output so it must

provide a GUI which can be easily used by all of its users; builds XML Test Configuration file

with the help of File System, Build Processor and Remote Terminal File System Services and
submits test configuration to the server through Network Resources. RTCT is required to

communicate with other members from time-to-time so the communication mechanism built
into it must have a simple and flexible structure capable of performing efficient data transfers.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -11- 8/18/2013

6. Data Flow in RTCT

This section attempts to explain, at a high abstraction level, as to how the data flows inside

Remote Test Configure Tool. In accomplishing its task of remotely configuring tests on a test
server, the RTCT has to exchange data with various other members in its surroundings (as

explained in previous section) but how this data is processed inside the structure of RTCT can
be best depicted by means of a top level Data Flow Diagram, as shown below in Figure 4.

As shown in diagram, RTCT can be thought of producing desired results by co-operation of six

processes. Each process either takes some data from an outer resource or from another
process and produces some data which may be used by yet another process or is the output

of RTCT. In the paragraphs to follow each of these processes is briefly described.

6.1 Process 1: Build Libraries
After user browses and selects all test files of interest, the first process Build Libraries starts.
In this process, each selected file is checked for whether it is a source code (and needed to be

built into library) or it is a Dynamic Linked Library. In case of former, all the source codes are

built into one or more DLLs with proper display messages shown on GUI to the user. After this
process is completed, a data structure LibStore is created to store names of all test libraries.

6.2 Process 2: Create XML Configuration File
Create XML Configuration File process involves creating a XML file listing names of all test

libraries stored in LibStore data structure. This process also decides the name of destination
directory on server to copy all libraries into and appends the XML file with this information. In

order to do so, this process needs to make use of the File System services so that it gets hold
of the file handle for manipulation of file with that file name.

6.3 Process 3: Copy Files to Server
After creation of configuration file, libraries listed therein are to be copied to the test server.

This process starts with sending of XML based messages to test server of getting ready for
receiving test files. Test files (libraries) are then transferred one by one and corresponding

display messages are shown to the user.

6.4 Process 4: Submit Configuration File to Test Server
After all test files are copied on server, the XML configuration file created in process 2
(TestConfig.xml) will be submitted to server to schedule the tests. This process ends with

sending out a message to server that a configure file has been added to its pool.

6.5 Process 5: Invoke Test Harness
After RTCT has completed its task of configuring tests and submitting details to the server, it
will have to wait for the Test Harness process to execute all tests. Thus now Test Harness is

invoked and as it progresses, proper test messages are display to user through GUI.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -12- 8/18/2013

Build Libraries

1

Display

6

Invoke

Test Harness

5

Copy Files to

server

3

Submit

Configuration file to

test server

4

Create XML

Configuration File

2

T
est F

ile N
am

es .dll

.cs

LibS
tore

D
ata S

tructure

File
 H

andle

File
 N

am
e

LibS
tore

D
ata S

tructure

Test Files

Disp
la

y
M

ess
ages

XML Messages

TestConfig.xml

Display M
essages

T
estR

esults

D
ata S

tructure

XML Messages
Tes

t R
es

ul
t L

og

Test
 R

esu
lt

Log

XML Messages

Data Flow Diagram

D
is

p
la

y
M

e
ss

a
g
e
s

XML M
essages

Figure 4: Top Level Data Flow Diagram for Remote Test Configure Tool

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -13- 8/18/2013

6.6 Process 6: Display
This is the last process as tests culminate at this stage. Test Harness sends a message to

RTCT intimating test completion. Along with this Test Result Log is also sent to the Master
RTCT (i.e. RTCT from where user started tool). Summarized test results are displayed to user

and the Test Result Log is also supplied to the user.

Conclusion: As shown in Figure 4 and described in previous sub-sections, Remote Test

Configure Tool mainly involves transferring files from and to Master RTCT. Thus considering
pivotal role of XML Configuration file and undoubtedly the test files in testing process, RTCT

must implement a secure and efficient communication and message passing mechanism for
reliable data transfers. Among constituting processes of RTCT the main data flow is of data

structures which are used to store test file/library names (TestLib DS) and results of
individual tests (TstResults DS).

7. Use Cases

This section attempts to identify principle users of the Remote Test Configure Tool, ways in

which they will interact with the tool and what features will be incorporated to suffice needs of
all users.

7.1 Principal Users
Main users of this tool can be categorized into three groups:

 Software professionals

 Non-technical end users
 Users from academia

In the sections to follow is described who all belong to each of above category of users and

what they expect from Remote Test Configure Tool.

7.1.1 Software Professionals

This category comprises of most of the users of this tool and it is this category which will use

the tool most frequently than any other category.

 Software Architects

A Software Architect is a person, who is responsible for gathering user requirements to lay

down project specifications and divide project into simpler modules keeping in mind available
infrastructural, economic and human resources. Often implementation of logic deviates from

what was set in its concept document due to technical constraints. It is the responsibility of a

Software Architect to verify whether the progress is in a direction meeting specifications or
not. When, in case of large projects, different modules of the projects are being developed at

distant places, Remote Test Configure Tool will prove to be very efficient for such purposes.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -14- 8/18/2013

Need: Remote Test Configure Tool will prove to be beneficial to an Architect:

a) Continuous track of whether project specifications are met
b) Identification of probable architectural faults if a module fails

c) Immediate communication with Program Manager/Team Leader on a failure and
prompt action for an alternative architecture

Conclusion: With the progress of a project an Architect very frequently hops (from his

terminal) between testing modules developed by different groups thus RTCT should provide
easy browsing of remote terminals and convenient features to add/edit test suites so that an

Architect may frequently configure tests located at remote locations. Also a history of recently

tested files should be maintained.

 Program Manager/Team Leader

A Team Leader is a person who leads a group of software professional to achieve a certain
goal in Software Development Life Cycle. Many such Team Leaders work in co-ordination to

meet specifications of a project and are in turn directed by a Project Manager. Thus it comes
on the shoulders of Program Managers and Team Leaders to complete the project with in

stipulated time and with an effort to deliver utmost accuracy and quality to the customer. In

an effort to do so, tests are frequently performed on different modules being worked on. A
Remote Test Configure Tool will be very helpful for these purposes and in case of Project

Managers this becomes even more useful because they have to assess the work going on in a
number of different teams under him/her. Again for this class of users frequent testing is a

must to ensure proper progress of the project.

Need: Project Manager and Team Leader play very crucial role in software development and
use of Remote Test Configure Tool will have following impact in the process:

a) Immediate discussions with teams/members if a module fails

b) Assessment of accuracy and speed of teams
c) Prompt changes in design/architecture/functionalities if so required

Conclusion: Remote Test Configure Tool again needs to provide a user friendly interface so

that different remote test files may be browsed easily and in addition now the interface should
show a brief detail of result so that Program Manager know which Team Leader to contact and

a Team Leader knows which group to contact.

 Code Developer

Eventually it comes to a Code Developer to transform code logic into reality. Writing an
efficient code under numerous time and resource constraints needs continuous testing of code

being written so that codes depending on it will not be affected due to it. Dependent codes
may possibly be developed by another developer sitting at a remote terminal and this is

where Remote Test Configure Tool comes into play.

Need: Remote Test Configure Tool when utilized for code development process will definitely
speed up the process as it will help in:

a) Successful integration of modules being developed with already existing modules

b) Discussion with Project Manager, Software Architect or Team Leader to change
design/architecture if present concept is practically not viable

c) Modifying module designs to keep code complexity within allowed levels
d) Avoiding failures at later stages

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -15- 8/18/2013

Conclusion: A Code Developer works at the finest details of the project and thus needs to

know all possible details of a failure, if one happens, and thus the interface will furnish details
of tests if a Developer chooses to view. Moreover RTCT should keep a brief history of recent

files/modules/suites tested so that this user will save time testing same set repeatedly.

 Quality Assurance/Testing

Quality Assurance team is responsible for maintaining industry standards of the code being
developed whereas Testing teams are responsible for verifying whether a code is capable of

performing the satisfactory under all circumstances and in all environments. A person can

never completely test/verify a code developed by him/her and this is the reason why these
teams are almost always an imperative part of the industry.

Need: Quality Assurance and Testing teams perform some of the final tasks before product

deliverance to the customer and thus Remote Test Configure Tool will be helpful in valuable
returns in terms of time:

a) While modules are under development, recursive testing of modules is performed to
check that modules being developed and already existing modules are compatible with

each other

b) Immediate notification to concerned teams of any failures
c) Discussion with Team Leaders of maintaining industry standards

d) Intimate Architects and Code Developers if desired performance is not obtained

Conclusion: Testing/QA teams should concentrate more on which types of tests to perform
than how to configure and perform the tests. Thus Remote Test Configure Tool will provide

very simple user interface so that test configuration and execution now becomes
responsibility of Remote Test Configure Tool. Keeping track of recently tested

files/modules/suites is even most for this class of users as they are only concerned with

exhaustive testing of code being written.

7.1.2 Non-Technical End Users

The Remote Test Configure Tool will mostly service the users described in above section but

there exists a category of Non-Technical End Users which includes all those clients of software
industry that do not deal in software but intend to utilize a software tool/product to aid profit,

promptness and convenience in their business. When such a customer places an order with a
software company it becomes necessary to keep track of what’s the progress of his order to

ensure his investments has gone to useful sinks.

Often vendors keep their clients informed (sometimes they are obligated to) and meet up to

showcase, if a part of the project partially satisfying customer’s requirements is completed.
For such purposes Test Harness may be used as a demonstration tool. In such situations a

client can judge how the product/tool under development is going to behave when made to
work in actual environment. The ‘environment’ here may be ‘to work in conjunction with other

software tools already in use at client’s site’. Remote Test Configure Tool will prove to be
beneficial in this case as it will save client’s time in aggregating all test files.

Need: Use of Remote Test Configure Tool by this category helps improve co-ordination
between software industry and its clients by constructive feedbacks. The impacts are:

a) Immediate intimation to vendor if product development process is lacking in
considering some requirements or if client changes some requirements

b) Prompt action and design changes if product is not working as expected in its destined
environment

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -16- 8/18/2013

Conclusion: A fairly simple user interface and summarized test result display is desired for
this user. As he/she does not directly relate to software usage so a tool which generates

desired results just on a ‘button’s’ click is the most sought-after in this case.

7.1.3 Users from Academia

Although Remote Test Configure Tool is more suited for large commercial projects but
academic work places are the platform where almost everything can be put to some useful

work. This tool may be put to a very efficient use in some on-the-spot code development

competition where codes developed can be instantly checked on-the-spot only. Also in a
university, Remote Test Configure Tool can be utilized by an instructor to test numerous

project submissions quickly if he/she has developed some test code to test those
submissions.

Overall Impact: Based on the discussions in previous sub-sections, following conclusions can

be drawn:

I. A common conclusion about Graphical User Interface of Remote Test Configure Tool is

that it should be fairly simple and user friendly so that all categories of users do not
have to make efforts to figure out how to configure tests and rather concentrate on

tests.

II. Team Leaders, Code Developers and Testing Teams will need to repeatedly run tests

on same set of test files as changes are made to them. So Remote Test Configure Tool
will keep a history of recently tested projects so that these class of users need not

browse all the way down to the files they have already used in testing many times.

III. Certain classes of users for example those belonging to Non-Technical End Users and

Testing/QA teams, due to specific reasons as quoted above, would appreciate a tool
which can run on just a button’s click and generate required results without requiring

any further user interference.

7.2 Use Case Diagram
This section points-out all possible interactions which may take place between a user and
Remote Test Configure Tool. These interactions are depicted here with the aid of a Use Case

Diagram:

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -17- 8/18/2013

Off Test Server Users

Add Test Files

Remove Test Files

Save Test Suite

Load Existing Suite

Delete Suite

Reload Suite

Submit Tests

Add to Suite

Add Client

View Status Queue

View Test Status

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Remote Test Configure Tool

Network Administrator

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Use Case Diagram

Abort Tests

«uses» «uses»

Retrieve

Test Log

«uses»«uses»

Figure 5: Use Cases for Remote Test Configure Tool

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -18- 8/18/2013

7.3 Use Cases
The Use Case Diagram shown in last section represented all possible interactions of the tool

with its users; this section discusses each of those in brief.

7.3.1 Add Test Files

User will probably be first interested in performing this command. The user will be capable of
selecting whether to browse in local terminal or a remote terminal and select multiple files to

add to test suite.

7.3.2 Remove File/s

If user thinks to execute lesser tests at a time or due to some other reasons, he/she may do

so by removing (multiple) files from test suite.

7.3.3 Save Test Suite

User will have an option to name and save a test suite he/she will be performing tests on very
frequently so that next time tests can be performed by loading this suite which already exists.

7.3.4 Load Existing Suite

A user will be able to load an existing suite if he/she saved one in past so that every time
same files will not have to be selected if same test suite has to be tested.

7.3.5 Delete Test Suite

User will be able to delete an existing suite.

7.3.6 Submit Tests

After user has added all desired test files to test suite, he can submit the suite to test server.

7.3.7 Add to Suite

After submitting suite to server, if a user intends to add some more files to the suite he/she
may do so using this command. This will result in starting the tests again with new files in

consideration this time.

7.3.8 Reload Suite

A user will be able to reload the suite (already loaded) to perform tests again after certain

modifications to one or more files of suite. This will be the case when a set of modules are
continuously concurrently tested and developed.

7.3.9 View Status Queue

After submitting a suite to test server, if test does not start immediately that means

submitted suite is in a queue and will be executed in a priority order. In this case user will be
able to view status of his/her suite in the queue.

7.3.10 View Test Status

User will always be able to view status of tests being performed at that time at server. The

status bar will show how many tests are still to be performed.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -19- 8/18/2013

7.3.11 Abort Tests

If due to some reasons user decides to cancel tests he submitted earlier and not yet

executed, he/she may choose to do so by aborting the test suite submitted.

7.3.12 Retrieve Result Log

After tests complete, user will be able to retrieve and save test result log from server.

7.3.13 Add Client

With expansion of local network, it may be required after some time to add some new clients.

For the new clients to facilitate Remote Test Configure Tool, the Network Administrator will be
required to configure new clients on all existing terminals supporting the tool.

Conclusion: Above use cases cover a wide range of interactions probable between users and

Remote Test Configure Tool considering all of its users. The Graphical User Interface, if
incorporates all of above features, will provide all classes of users with a very convenient and

friendly interface to configure tests. ‘Add to Suite’ and ‘Abort Tests’ may be difficult activities

to handle as they will be requested when test have already been submitted to test server.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -20- 8/18/2013

8. User Interface Views

This section describes the graphical interface between the user and Remote Test Configure

Tool. RTCT is intended to be used mainly by the software professionals where it will most
likely be put to repetitive use and thus the interface must be very simple and quick to use so

that not much efforts and time should be invested in using the tool rather than performing
tests and analyzing the results. As explained above, the users may also be from academia

that will use such a tool for the first time and also a Customer need not necessarily be having
much software experience and thus an effective and easily comprehensible user interface

must be provided by the system. Following are screenshots of possible interactions a user
may have with the tool are given along with their description.

Screenshot # 1: User will be presented with screen shown in Screenshot # 1 below. As seen
from figure, buttons ‘Submit Configuration’, ‘Remove Test Files’, ‘Recent File/s’ and ‘Save Test

Suite’ are disabled because no files have been added to test suite yet.

Screenshot # 1

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -21- 8/18/2013

Screenshot # 2: On pressing ‘Add Test Files’ button, a file browser will be opened as

depicted in Screenshot # 2. Two checkboxes are provided to select whether to browse local or
remote terminal/s (in this screenshot local machine is browsed). The user will browse to

particular directory and will be able to add one or more files. It is to be noted (although not
shown here) that source code can also be added as a test file.

Screenshot # 2

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -22- 8/18/2013

Screenshot # 3: As shown in Screenshot # 3, the browser window is closed on clicking ‘Add’

button and selected test files are added to ‘Panel’ with title ‘Selected Test Files’ which also
shows how many files are there in the suite. As soon as more than one file are added, the

initially disabled buttons become enabled as seen here because now test suite is not empty
and thus these commands can be executed.

Screenshot # 3

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -23- 8/18/2013

Screenshot # 4: Now if ‘Submit Configuration’ button is clicked window displays some more

information as shown in Screenshot # 4. Complete path to test directory on server where all
test libraries to be loaded are copied is shown next to ‘Test Directory Path’. ‘Configuration

Status’ shows status of submitted test/s from this terminal. In this case the configuration will
be processed after another configuration. Note the name of test directory created on server,

this is a specific nomenclature for avoiding certain issues as discussed in section 9.2 (Test
Server Issues).

Screenshot # 4

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -24- 8/18/2013

Screenshot # 5 & 6: Once RTCT starts test configuration submitted by this Master RTCT,

‘Configuration Status’ changes to ‘Executing’ as shown below in Screenshot # 5. On
completion ‘Tests Completion’ turns 100% and a brief summary of tests is displayed on the

interface. Again notice the name of test result log (discussed in next section) a part of which
is identical to test directory name. A screenshot is shown here of the console logger’s output

(Screenshot # 6).

Screenshot # 5

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -25- 8/18/2013

Screenshot # 6

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -26- 8/18/2013

Screenshot # 7: Now that a test has been performed, RTCT has some history of recently

tested files. Now if user clicks ‘Recent Files’ button, a window pops up as shown below in
Screenshot # 7 which populates recently tested files in the history of tool. At this stage

one/more files can be added to the test suite by checking the proper check boxes (Test 6 and
Test 7 here) and clicking ‘Add File/s; button.

Screenshot # 7

Conclusion: The User Interface designed is very convenient to use and results are displayed
in a simple & easy to understand and analyze. In addition, buttons for all possible interactions

automate the process to a large extent. Many features are added to make the tool interface

convenient and easy to test a same set of files again and again.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -27- 8/18/2013

9. Issue Analyses

‘Issues’ are actually like corner-cases when we talk of developing software, which must be

given proper thought before starting with the project or else a vendor may have to face
discontented client reviews. This section discusses some issues which are pivotal in RTCT’s

sound functioning. For each issue, first the possible problem/s is/are discussed in brief, then a
solution is suggested which if incorporated into design may, at least, moderate the situation;

at last each issue has been identified to be either as a ‘critical’ or ‘not critical’ issue.

9.1 Performance Issues
These issues deal with the load and memory usage of system.

Issue # 1: What should be done if data in the network transfers increase to some
uncontrolled levels at peaks hours? What if in a large project, tests keep on getting configured

at the server and data traffic increases to a limit where performance starts deteriorating?

A XML Test Configuration File will only be sent to server after all test files have been copied

on the server. Suppose at a given time a server is heavily loaded performing tests and
sending test result display messages and test result logs to respective Master RTCT. At this

time when already a server is so loaded, if it keeps getting test files and configured tests, this
will result in delay in tests which were being performed and even more delay for newly

configured tests to be executed hampering overall performance of the tool due to high loads.

A Load Analysis is done below which better explains this issue in direction of Principal Users
discussed in previous sections. As these figures closely represent a real† large project

development scenario, the importance of this issue may be truly assessed.

† Mr. Navit Saxena (E-Mail: nsaxena@syr.edu) suggested me these figures as I have no work

experience in software industry. Mr. Rohit Missar’s OCD for ‘Remote TestBed’ (Version 1.0)

has been referred for analysis purposes.

Consider the following project details:

Project Team Size = 100

Total number of teams = 10
Total Code Developers = 80

Total Team Leaders = 10
Total Managers = 5

Total Architects = 5

This leads to a team of ‘8’ Code Developers which is a fairly real world situation for a large

project. Test Harness (Version 1.0) developed in ‘Project 2’ generates test log of
approximately 11 KB; if only details pertinent to tests are logged then this size may be say

some 30 KB (average figure) for a large project involving many more tests. Thus,

Size of test log = 30 KB
Size of XML Message file = 500B

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -28- 8/18/2013

Consider a large project as:

Total Line of code = 1000000

Number of modules = 250

Take the case of a request for retrieving Test Result Log files for complete project from
server. Considering only the one way traffic when log files are being sent to Master RTCT by

Server RTCT (i.e. XML Message file is not considered), size of all log files comes to be:

Number of modules * Size of one test log file = (250 * 30) KB

 = 7500 KB or 7.5 MB

Log files would be requested mostly at the start of a day to review previous day’s scheduled
test result logs and secondly at the end of the day to review the day’s work. If we take 85%

of team members to be at work at these peak hours then server would face 85 such requests
which will push into network total bytes given by:

 = (85 * 7.5) MB = 637.5 MB

Now for any given local network bandwidth, this is a heavy size and really a gigantic load for
server to service.

Possible Solution: There are two possible solutions to tackle this situation:

1) Some ‘Caching’ mechanism may be used for holding test result logs. Whenever a Master

RTCT requests the log, test log on the cache is checked for being the latest copy of the
log. If so, cached copy is returned. This will definitely moderate load on server.

2) When server can not support any more requests, a message may be sent to all Master
RTCT to be displayed to user that server is overloaded and if still files are being sent

then a queue will be established at the respective Master RTCT which will hold these new
blocks of data. When server is relieved of its load, it fetches data from these queues

until they exhaust.

Implementation Decisions: RTCT will be designed keeping in mind both of above solutions
as a combination of these will take care of heavy test log requests and heavy traffic due to

copying of test files. But there will be a limit to size of queues established at Masters so

adding files to these queues will create problems after some level which makes it a critical
issue.

Issue # 2: Issues with crashes due to resource contentions

Whenever Test Harness is started at the server, all configured tests are served on different

threads. When these requests go high, memory contention may begin leading to one process
using up the memory allocated to another process resulting in unstable environments that will

eventually crash the server and whole application.

Possible Solution: A solution for this issue may be to run each test configuration in a

different AppDomain. This will facilitate unloading the child AppDomain once tests configured
to run in it are exhausted. This way now very fewer processes will have a chance to interfere

with each other’s resources.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -29- 8/18/2013

Implementation Suggestions: RTCT will create a new child AppDomain each time a XML

Configuration file is read and tests will be executed in this newly created domain. As this issue
can be easily taken care of so it is not a critical issue.

9.2 Test Server Issues
These issues are concerned about the processing done on test server.

Issue # 3: Issue with naming of Test Directory on server

To save time and service a Master RTCT at the earliest possible, each test configuration will

be run on a separate thread. When tests are performed Test Harness will load test libraries
from a specified test directory. Directory name can not be same for all tests as then Test

Harness will load libraries for all tests from same directory as all test files will be copied to
same directory and respective Master RTCTs will not get test results fir tests they configured.

This will create great confusion for Test Harness and it may eventually crash.

Possible Suggestion: Root cause for this issue is naming of test directory on server so this

issue can be handled if some naming mechanism can be figured out so that every time a test
directory is created it has a unique name which is taken for the first time. There are two

possible solutions for this issue:

1) When user adds test files to test suite in the initial steps, at that time user may be
prompted to give a name for test directory to be created. If a directory with that name

already exists user will be prompted to enter a different name. This is a feasible

solution but then tool will no more be a ‘single push-button click tool’ as required by
certain classes of users.

2) Another solution exists which will handle this issue and will not let the user even know
about any such problem/activity. This solution is to implement a mechanism which

randomly names test directory to be created at server when creating XML
configuration file at Master RTCT. One such mechanism is explained below:

Test Directory Naming Mechanism: Every time a Master RTCT is started, it contacts Server

RTCT and gets itself registered. This way every Master RTCT on network is assigned a random

Terminal ID which has not yet been assigned to any other terminal. If we observe carefully,
the Server RTCT will select a configuration file from a bunch of them based on some priority

criterion and starts running specified tests on a separate thread. Thus the server creates only
one configuration file at a given time or put simply, time of creation is unique for every

configuration file. Thus directory name will be created as:

 Directory Name = “TestDirectory” + Terminal ID + Current Time

For example, if two users submit two test configurations from two different terminals at the

same time (considering worst case scenario), say 18:34 hours and let terminal IDs are 1234
and 9876 respectively.

Directory Name 1 = TestDirectory12341834

Directory Name 2 = TestDirectory98761834

NOTE: It is assumed that system time on all machines on the network is synchronized.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -30- 8/18/2013

Implementation Suggestions: Solution # 2 will be incorporated in design and will be used

for naming of test directory. This naming mechanism can be easily implemented in C# and
thus it is not a critical issue.

Issue # 4: Issue with order of selecting XML configuration files.

When numerous users configure a number of tests on the server, it depends on Server RTCT

as to which XML configuration to select and start performing tests mentioned in it, but then
what order should the server acquire or else if to be selected in some priority mechanism,

how should the priority of XML configuration files be decided?

Possible Solution: This issue is important to maintain fair and logical test execution. There

are two possible options for this:

1) Randomly select a configuration file from available set of files and start executing it.
This is a simple solution but not at all fair (on many occasions). In this manner a

configuration submitted last may be selected and started first which will be unfair to
other users who submitted their tests quite early but had to wait without any reason.

2) Another solution is to keep a record of number of libraries to load for each
configuration and the time stamp when XML file was submitted. The XML file which

lists maximum number of libraries to be loaded will be selected first. After this
configuration is operated on, other configurations will be checked for time stamps of

their arrival on server. Now configurations will start loading in order of their arrival in
parallel. Once configuration with maximum libraries to be loaded exhausts its tests,

remaining configurations will again be checked for maximum number of libraries to be
loaded and the process will continue until there’s only one configuration file at server.

Implementation Suggestions: Later solution will be implemented into design. Although this
involves a higher logic level that the former one, but it will maintain fairness and keep the

execution sequence in a logical order. As discussed above, this issue can be properly handled
and thus it is not a critical issue.

Issue # 5: Issue of overwriting system files on server.

Server is the central processing element in a Remote Test Configure Tool set-up. While files
are copied from Master RTCT and various Slave RTCTs, there is a high risk of important

system files to be overwritten in this process. This may bring the whole network
communication down.

Possible Solution: Apart from only allowing Network Administrator to manipulate setting on

test server, it must be made an obligation during installation process to mention critical drive

(if more than one drives are present) from important file point of view. One more, even
better, solutions is to enlist names of important system files which are present on every

machine and store this list in a data structure. Whenever a file is being copied to server,
name of file must be checked against names in this list; if a match is found user is prompted

to rename the file/s.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -31- 8/18/2013

Implementation Suggestions: As this is a security issue for server, both of above

measures will be incorporated. Although later suggestion holds weight, Network Administrator
setting will prove to be a second line of defense. By no means can RTCT always find out

which are important files; Administrator’s negligence/ignorance/mistakes (administrator being
a human) can not always be relied upon. This makes this issue a critical issue.

Issue # 6: Issue of deletion of XML configuration file.

Although this is really a rare case, but due to many possible reasons (for example

inadvertently by Network Administrator) one or more XML configuration file/s may be deleted

from server. In that case, user will wait after submitting the tests and will never see the
results because test libraries are at server but configuration file corresponding to those

libraries is deleted.

Possible Solution: A simple and feasible solution may be to keep a track of how many
configuration files have been received by the server. This can easily be done with a counter.

Now every time Server RTCT comes to configuration file pool, it should verify that number of
files is same as indicated by counter. If so proper configuration is opened to read and

processed and counter is decreased by one.

Implementation Suggestions: Using counters for tracking configuration files, this issue can

be easily handled and thus it is not a critical issue.

9.3 Data Transfer Security Issues
These issues deal with theft of data which are transferred over network to configure tests at

server.

Issue # 7: Issue of data hacking during transmission.

With increasing competition in every field, it is very possible that a firm’s competitor may try
to hack the data being transferred during testing. This may result in leak of important

information about a project under development or even tampering of important code within

interiors of the organization.

Possible Solution: Two potential solutions for this issue are as below:

1) Data may be encrypted before transferring to other end. At destination data is again
decrypted and interpreted. This is a reliable method but involves overhead in terms of

extra CPU cycles for encoding and extra financial resources.

2) Another remedy may be to use a coding which can be decoded by only terminals on

the network. Also rules like CRC checks may be incorporated.

Implementation Suggestions: As quoted above, former is not an economical solution
whereas later does not ensure complete data security. Thus, as such, no reliable solution is

found for securing data against hacking and this is a critical issue.

Issue # 8: Issue of communication line disconnections.

Local networks are usually always laid through workplaces of employees in an organization.

Due to personal intentions, accidents or insects, communication channels may face physical

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -32- 8/18/2013

breakages. These breakdowns are very critical as in this case, message sent from

Master/Server RTCT will never be received by the Slave RTCT and thus system may enter an
undefined state (possibly a deadlock).

Possible Solution: Buffers may be used at terminals so that every outgoing message will be

stored in the buffers until an acknowledgement is received from receiver. Thus in case of
channel breakages, buffers will contain the recently sent message and as soon as connection

is resumed unacknowledged message is sent again.

Implementation Suggestions: This is a reliable solution for the problem but may increase

intricacy and complexity of the code. As this solution is feasible so this is not a critical
issue.

9.4 Source Code Build Issues

Issue # 9: Issue of source code builds

Test Harness loads only Dynamic Link Libraries built from the source code to be tested. If a

source code (i.e. *.cs file) it will not even load that file. A user can fairly select a source code
file as one of its test files and it’s a project requirement to build that source code to a DLL.

Now this can be done at the Master/Slave RTCT where the source code resides or else it can
be first copied to test server and then built into library at the server. Which one is better?

Possible Solution: It is always better to build source codes into libraries at their host
machines (and not at test servers) because of two reasons:

1. Building libraries at server will adversely affect its performance at times of peak loads

when in addition to service client requests and performs tests it will have to do this
addition processing while clients will be comparatively much less loaded.

2. If source code is built into library at their hosts, XML Configuration files will be created

with final listing of test libraries in it; whereas if built at server, first server will read for

any source code in test directory, if one exists it will built it and then update XML
configuration file so that when it starts loading libraries it gets all of them.

Implementation Suggestions: Source codes, if any selected as test files will be built into

libraries (DLLs) on machines where they reside. The logic to incorporate this decision can be
easily implemented and thus it is not a critical issue.

9.5 Test Result Log Issues
These issues are related to processing of test result logs.

Issue # 10: Issue of naming of Test Result Log.

Dependent on user, he/she may test logs from server. Now if name of test logs is fixed then

every time a log is retrieved, a single file is either replaced with the new one thereby losing
old logs or appending old logs with new test results. How can test logs be made unique for

each test performed?

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -33- 8/18/2013

Possible Solution: A very simple solution is to use the same file name as the directory name

of test directory as discussed in Issue # 3 under section 9.2 with some modifications. For
example test result logs for those two cases will be:

Test Directory: TestDirectory12341834 Result Log: TestResult12341834

Test Directory: TestDirectory98761834 Result Log: TestResult98761834

Implementation Suggestions: As shown above this issue can be easily taken care of, this
is not a critical issue.

Conclusion: Some critical issues are identified and a potential solution to problems caused by
these issues has been suggested for each one. Decisions needed to be taken while

implementations are also mentioned. After proper implementation of these solutions, Remote
Test Configure Tool will be implemented as a very efficient application from the view point of

memory space and execution time.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -34- 8/18/2013

10. Modular Architecture

Remote Test Configure Tool will be developed as an integration of two modules namely ‘Client

Module’ and ‘Server Module’. This is due to slight difference in functional requirements of
Master/Slave RTCT and Server RTCT.

A Client Module should provide following facilities to user:

 Browsing local machine
 Browsing remote machine/s

 Sending messages/commands to server and slaves
 Receiving messages/commands and execute them

Similarly a Server Module should be capable of:
 Selecting a configuration file from a pool and interpret it

 Sending messages/commands to clients
 Receiving messages/commands and execute them

 Running Test Harness

In an abstract way, both modules have most of functions common except for a few. Thus
Client Module and Server Module will be developed as consisting of same set of modules

(except a few) so that they are reusable. It should be noted that however the (modular)

structure in which these modules interact is different in the two cases.

10.1 Layers
Modular architecture of a RTCT can be thought of as composed of four main layers:

 Presentation Layer
 Processing Layer

 Data Storage Layer
 Communications Layer

Presentation, Processing and Communications layers, as the names suggest, are responsible
for user interactions, data processing and communication. Data Storage layer however deals

with ‘messaging’. It should be realized by this point, as it will be explained in following
sections, that interaction of Master RTCT, Slave RTCT and Server RTCT forms the very basis

for proper functioning of RTCT and these interactions are implemented using message

passing. Thus ‘messaging’ and so Data Storage layer are very vital for RTCT. Also from the
discussion preceding this section it is clear that Data Storage and Communications layers will

be similar for both modules however Processing and Presentation layers will slightly differ in
two cases.

In the paragraphs to follow, all modules are described in brief and then working of ‘Client

Module’ and ‘Server Module’ is explained with the aid of modular structures.

Note: Modules are described before explaining Modular Architecture diagrams because Client

and Server modules are constituted by mostly the same modules and thus it will be easy to
understand differences in interactions of same set of modules in the two architectures after

we know functions of each module.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -35- 8/18/2013

10.2 XML Encoder Module
XML Encoder belongs to ‘Data Storage’ layer. It gets its operand in form of strings which are

appended with proper XML tags to form legal XML based messages to be used for
communication. These XML based messages are then passed on to Message Mailbox module.

10.3 Message Mailbox Module
Another member of ‘Data Storage’ layer, Message Mailbox stores XML messages generated by

XML Encoder module. It is an entity independent of Communications layer as it goes on
storing messages irrespective of at what rate the messages are being sent. This module

works in conjunction with Send Queue module (explained next) and plays pivotal role in case

of communication channel disconnections; Message Mailbox keeps a message stored in it until
Send Queue is acknowledged by Communications module of receiving last sent message.

Thus in case of receiver disconnections, Message Mailbox stores all messages which were not
sent due to breakage and makes these messages available to Send Queue once connection is

re-established. This module forms the core of ‘Data Storage’ layer as it is the one which takes
care of proper storage of data until it is safely transmitted to its receiver.

10.4 Send Queue Module
A member of ‘Data Storage’ layer, Send Queue module is responsible for fetching messages

from Message Mailbox module and making them available to Communications module. As
explained above, it aids Message Mailbox module in avoiding malfunctions during

disconnections.

10.5 Communications Module
Communications module represents the ‘Communications’ layer. It is responsible for all
interactions between different members of RTCT which interact across the communication

channel. It will be implemented .NET Sockets. This module receives messages to be sent from
Send Queue module and communicates with the RTCT whose IP address is mentioned in the

message.

10.6 XML Decoder Module
As is clear from its name, XML Decoder module does exactly opposite to what XML Encoder
module is responsible for. This module receives XML based messages from Communications

module and parses the message to extract messages/commands sent in message. This
module constitutes ‘Processing’ layer and passes extracted information from XML message to

Command/Message Handler module (explained next).

10.7 Command/Message Handler Module
Another member of ‘Processing’ layer, Command/Message Handler module is responsible for
interpreting the information (which must be a message or a command to be executed)

received from XML Decoder module and taking proper actions. This module forms the core of

‘Processing’ layer as it comprises the intelligence which eventually process information being
passed around in network.

Additional ‘Client’ Module members

10.8 Client Executive Module
This is the executive of ‘Client’ Module and is responsible for initiating Graphical user Interface

and Communications services. This module belongs to ‘Presentation’ layer of Client Module.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -36- 8/18/2013

10.9 GUI Module
Another member of Client Presentation layer, GUI module is responsible for interacting with

the user. This module supplies XML Encoder and Command/Message Handler modules with
necessary user inputs.

10.10 Build Module
A member of Client Processing layer, Build module is responsible for building any source code

into library.

Additional ‘Server’ Module members

10.11 Server Executive/GUI Module
A Server Presentation member, Server Executive/GUI module serves as the executive of

‘Server’ module. As Server RTCT will rarely be used to configure tests by a user, thus GUI will
not always be available at Server module. GUI will only be started when a user (often the

Network Administrator) intends to configure tests from the test server.

10.12 Configuration Loader Module
This module belongs to Server Processing layer and is responsible for deciding and reading
XML Test Configuration files in a logical order.

10.13 Test Harness Module
The central processing unit responsible for performing all tests, Test Harness module

constitutes Server Processing layer. For more details on this module please refer to “Test
Harness – Operational Concept Document Version – 1.0”.

10.14 Working of ‘Client’ Module
This section explains how will the basic functions of ‘Client’ module will be performed with
help of the proposed modular architecture for ‘Client’ shown below:

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -37- 8/18/2013

Client Executive

GUI

XML Encoder

Message Mailbox

Send Queue

Communications

XML Decoder

Command/Message Handler

Build

Client Module Diagram

Pre
sentatio

n Layer

Data S
to

ra
ge Layer

Pro
cessing Layer

Communicatio
ns Layer

Figure 6: Module Diagram for ‘Client’

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -38- 8/18/2013

a) Browsing Local Machine

This is a very simplified operation with reference to the proposed architecture. When user
clicks ‘Add Files’ on the GUI with a check in ‘Browse Local Machine’ checkbox, GUI invokes a

Command/Message Handler module service which opens up the browser to browse local
machine.

b) Browsing Remote Machine/s

If a user clicks ‘Add Files’ on the GUI with a check in ‘Browse Remote Machine/s’ checkbox,
GUI Client module sends a XML based message to all machines on network (as explained in

part c). This message is then received by Communications module at all machines and proper
action is taken (as explained in part d).

c) Sending Messages/Commands to Servers and Slaves

In cases when Client module needs to send out a message to a slave or the server, it invokes

a XML Encode service which creates a XML based message. This message is then passed to

Message Mailbox module to be stored. Message Mailbox module forwards this message to
Send Queue module. Next time when Communication module fetches this message, it is sent

to all machines on network.

d) Receiving Messages/Commands and Execute

Often a Client will receive message/command from server. This information is obtained at the
Communications module which is then passed on to XML Decoder module. This module

decodes the XML strings based on its knowledge of tag interpretations and pass on extracted

information to Command/Message Handler module. Based on command/message in extracted
information, proper action is taken.

10.15 Working of ‘Server’ Module
This section explains how will the basic functions of ‘Server’ module will be performed with
help of the proposed modular architecture for ‘Server’ shown below:

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -39- 8/18/2013

Server Executive/GUI

Configuration Loader

XML Encoder

Message Mailbox

Send Queue

Communications

XML Decoder

Command/Message Handler

Test Harness

Server Module Diagram

Pre
sentatio

n Layer

Data S
to

ra
ge Layer

Pro
cessing Layer

Communicatio
ns Layer

Figure 7: Module Diagram for ‘Server’

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -40- 8/18/2013

a) Selecting Configuration File and Interpreting it

With the instantiation of Server RTCT the Server Executive module starts a service in
Configuration Loader module. This module continuously looks for any files in its configuration

pool and if finds one, the file is passed on to XML Decoder module which extracts test
directory path and pass it to Command/Message Handler module to take proper action.

b) Sending messages/commands to clients

 As explained in previous section.

c) Receiving messages/commands and execute them

 As explained in previous section.

d) Running Test Harness

Whenever Command/Message Handler module interprets received command to execute Test
Harness, it simply invokes the runTests() service of Test Harness module which spawns tests

in specified test directory on a new thread.

Conclusion: Remote Test Harness Tool will be developed as two modules viz. ‘Client’ module

and ‘Server’ module. Modular composition of the two is so designed that it results in a
reusable modular architecture. Considering importance of messaging in this tool, ‘Data

Storage’ layer is identified as the most important layer.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -41- 8/18/2013

11. Activities

11.1 Master RTCT Activities
This section discusses important activities of a typical Master RTCT. All the main activities are

represented in the form of an activity diagram below.

A Master RTCT starts with listening to the test server to find out whether server is running so

that tests can be performed. If the server is running and user commands to add test files,
browsing for test files starts depending on whether user intends to browse local machine or a

remote machine. The names and complete paths of the files selected by user are stored in a
data structure and name of Test Directory is generated. Now one by one an entry is selected

from the data structure to check whether any file is a source code and needs to be built into a
library; if one is found, it is built into library. Each file is copied to test server in the test

directory.

After all files are copied like this on server, a XML Test Configuration File is created which
contains test configuration information such as complete path to Test Directory and a list of

all test libraries. This configuration file is submitted to server and the Master RTCT now waits
for server to complete its tests. Once tests are completed, results are shown to the user and

depending upon whether user has more tests to configure in server or not, the tool again
shows the browsing options or else terminates.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -42- 8/18/2013

Server

 Running
No

User Input

Yes

Browse for

Test Files

Generate

Test Directory Name

Store file names

and path

Next file is

 source code

?

Build into library
Yes

Copy file to Test

Directory

Test File

list

Exhausted

?

No

No

Create XML Test

Configuration File

Yes

Submit Configuration

To Server

Tests

Complete

?

Display Results

No

Yes

More Tests

to

Configure

?

No

Yes

Master RTCT Activities

Figure 8: Master RTCT Activity Diagram

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -43- 8/18/2013

11.2 Server RTCT Activities
This section discusses important activities of a typical Server RTCT. All the main activities are

represented in the form of an activity diagram below.

Server RTCT is the entity which should always be running so that anytime a client wants to

configure tests it should be able to do so. The server can only be shutdown by a user with
administrator permissions (for example a Network Administrator) say for maintenance

purposes, etc. This is the reason why the server is always shown to be checking whether it is
commanded to shutdown by a user in which case server activities terminate; otherwise server

continues to run. As mentioned earlier, most of the times a user will configure test from client
terminals of network and thus user activities/inputs are not considered here.

If server is not commanded to shutdown, it enlists all the configuration files submitted by

various users. It then selects a configuration and interprets the XML tags to find out the Test

Directory path. If this path is found to be invalid, an error message is displayed to the user
and next configuration file, if available, is selected. If directory path is found to be valid, Test

Harness is invoked on a new thread which then loads all test libraries from this path. After all
tests are completed for this configuration, results are displayed and this sequence keeps on

repeating itself.

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -44- 8/18/2013

Server RTCT Activities

Shutdown

Enabled

?

Yes

Select Next

Configuration file

Decode XML Tags

No

Test

Directory

Path Valid

?

No

Yes

Create New Thread

Invoke Test Harness

On new thread

Display Results

Display Error

Message

Configurations

Exhausted

?

Yes

No

Figure 9: Server RTCT Activity Diagram

Remote Test Configure Tool – Operational Concept Document

Aniruddha Gore Page -45- 8/18/2013

Conclusion: All main activities can be performed by dividing them into smaller activities.

Such sub-activities were identified in this section. Users will not usually use server terminal
fro configuring tests so Server RTCT will not generally start its GUI service.

12. Future Release: RTCT over ‘the Internet’

This architecture of Remote Test Configure Tool is designed as simple as it can get, but the
foundation on which it stands on is concrete. Many features can be added to get a smarter

test configure tool.

One such feature is making the tool available over the internet so that every machine

accessible via the internet will then be a part of the testing system and physical distances will
no longer be a hurdle in continuous testing of remote dependent modules. This feature can be

added by making changes in the Communications module. Communications over the
‘Internet’ are based on Hyper Text Transfer Protocol (HTTP) and in the proposed concept

RTCT uses .NET Sockets for communication. If in place of .NET Sockets we use HTTP then the
goal is achieved. It should be noted here that not much alterations will have to be done to

this architecture because HTTP works on TCP/IP and Sockets is the underlying principle of
TCP/IP protocols.

This can be done using the classes of System.Web namespace which has features
implemented to enable client-server communication. It is done on the basis of its knowledge

of current HTTP protocols. The important classes available for this are:

 System.Web.HttpRequest class: provides knowledge about HTTP request
 System.Web.HttpResponse class: manages HTTP output to the client

 System.Web.HttpServerUtility class: provides access to server-side utilities and
processes

Said this, the document lays a firm foundation of concept, utility, architecture and issues of

the tool. Based on the simplicity and flexibility of architecture many more features may be
added in the future releases.

