

CSE 681- SOFTWARE MODELING AND ANALYSIS

Project #1

KEY-VALUE DATABASE
OPERATIONAL CONCEPT DOCUMENT

VER 1.0

RAVICHANDRA MALAPATI
SUID: 22375-2155
Date: 16-SEP-2015

 INSTRUCTOR- DR. JIM FAWCETT

1 | P a g e

Contents
1. Executive Summary ... 3

2. Introduction ... 5

2.1 Obligations .. 5

2.2 Organizing Principles .. 5

2.3 Key architectural designs ... 6

3. Use Cases .. 7

3.1 Software developer .. 7

3.2 Software architect.. 7

3.3 Testing team ... 7

3.4 Quality analyst/Quality Auditor ... 7

3.5 End User.. 8

4. Application Activities .. 9

4.1 Parsing the input file .. 9

4.2 Generate the Key-Value pair .. 9

4.3 Extracting the Key information ... 9

4.4 Persistence of Data .. 9

4.4 Saving Data to Database ... 9

4.5 Retrieving Data from Database ... 10

4.6 Heterogeneous Database .. 10

Technical Heterogeneity .. 10

Data model Heterogeneity .. 10

Semantic heterogeneity .. 10

4.7 Logging and Debugging .. 10

4.8 Dynamic Schema ... 11

4.9 Sharding of files .. 11

4.10 Scheduling ... 11

4.11 Immutable Database from query results .. 11

4.12 Zero configuration DB Engine .. 11

4.13 Error reporting ... 11

4.14 Display Results ... 12

5. Packages or Modules ... 13

5.1 Executive ... 13

2 | P a g e

5.2 Query Formatter .. 14

5.3 Query Editor .. 15

5.4 Logger ... 16

5.4 Key Value package relationship index ... 17

5.5 Query Engine .. 18

5.5 DB Factory .. 18

5.6 Memory Management ... 19

5.7 XML to DB ... 19

5.8 Data Sharder .. 19

5.9 Scheduler .. 20

5.10 Display ... 20

6. Critical Issues .. 21

6.1 Pluggable sharding strategy ... 21

6.2 Multi Thread .. 21

6.3 Distributed Architecture ... 21

6.4 Performance for Big Data files ... 21

6.5 Without GUI and Console how does user provide input .. 21

6.6 Maintaining relationships with old packages and new packages ... 22

6.7 Data loss ... 22

7. Extended Applications .. 23

7.1 Extended application as Code Repository .. 23

7.2 Extended application in social media ... 23

7.3 Extended applications in Internet of Things .. 23

8. References ... 24

9. Appendix .. 25

9.1 DBEngine .. 25

9.2 DBElement Package testing .. 27

9.3 Display .. 29

3 | P a g e

1. Executive Summary
With the advent of IoT (Internet of things) the number of devices on the internet are increasing

tremendously. The number of connected devices on the internet doubled in the last three years which

means if there were x number of devices in the market till 2012 now the count has become 2x in just a

span of three years. The data generated by these device is increasing rapidly. Take the example of

social network, the data generated by the social network in the last three years is almost equal to the

data that has been already existed before three years. (The values presented above are just estimates

from my reading in internet*)

In the technology market there is always demand to process the large amount of data that is present

in the database, the existing RDBMS databases are not efficient enough to process this large volume

of data. SQL has not been efficient in handling this large volume of data. Hence there are new database

that have come in the market which does not use the conventional SQL but proven to be efficient

handling large volume of the data. Since these databases doesn’t use not only the conventional SQL

but also other query methods, these databases are named as NoSQL Databases which means not only

SQL.

In this project to solve the industry problems of accessing the large databases we will work on

developing one of the NoSQL databaset. In the market there is long list of the databases, however

they are not suitable for all applications, Hence we are developing a new database with which we can

come over all the problems and can be used as single for any type of applications. For example

mongoDB is used for large document storage whereas Cassandra is used for key-value database.

Hence the existing NoSQL databases have their own merits and demerits. But we will try overcoming

all these drawbacks and develop one single database using C# language and .Net framework. While

doing so we will also try to retain some of the good features of the traditions SQL database. The

following are the list of NoSQL databases that are available in the market with their drawbacks[4].

1. Key / Value Based

e.g. Redis, MemcacheDB, etc

2. Column Based

e.g. Cassandra, HBase, etc

3. Document Based

e.g. MongoDB, Couchbase, etc

4. Graph Based

e.g. OrientDB, Neo4J, etc

As we talked earlier our goal in this project is to develop a database which can perform better in all

the above scenarios and better than the above databases.

We will also use C# and .Net frame work in this project to develop the database. Visual studio 2015 will

be our IDE to write C# programs with .Net framework.

4 | P a g e

We will also use the famous 3Tier architecture to implement the requirements. The above all

implementations will be explained in detail in this document.

The tool that we are going to develop will serve the following purposes

1. Read XML data file with instructions from user and save it in key value database

2. Up on Query from user in the form of XML file the tool will read from the database and provide

XML file to the user

3. Read the individual key value data(Hardcoded) from user and save it in database

4. Add the key values to the database up on request from user

5. Remove the key values from the database un on request from user

6. Modify the key values from the database up on request from the user

7. Create the child relationships between the key values when requested from user in metadata

The main users of the tool will be the developers, programmers, architects, Quality analysts, Quality

Auditors, Project Management Office (PMO), Testing Team, Client testing team and other stake

holders of the software project etc.

The database will also be accessed by the other applications online and offline from different locations.

Hence the database should be able to communicate with other applications using APIs error free.

The main stakeholders of this project would be Dr. Jim Fawcett as guide and requirements elicitation,

Ravi as software developer, software Architect and project manager, Microsoft for providing .Net

framework.

5 | P a g e

2. Introduction
The existing NoSQL Databases and RDBMS lack some flexibility and most of the NoSQL databases are

not serving all the purpose of the applications. For example: most of the applications are presently

using two databases one for accessing the critical data using the RDBSM and NoSQL database for

storing the large amount of the data for Data analytics purpose which is later used by Hadoop, Apache,

HBase and pig for data analytics purpose.

If a database is fast it cannot handle large amount of the data and if the database is able to handle the

large amount of the data then it will not be speed, because of this most of the BigData Analytics

applications are using the proxy backup servers or replicas of the actual real time server and using

them to do Data analytics, Hence most of the Data analytics are not real time and relayed with delay.

In this project we will develop a database which can solve the problem of the speed, reliability and big

data streams inflow and outflow. The database we develop can handle the document and the key-

value dictionaries with the same speed.

The new database can also be used as repository with parent child relationships. This feature will be

explained later in this document.

The presently available databases don’t provide the dynamic schema and in our database will

implement the dynamic schema feature. The dynamic schema feature will provide the feature

2.1 Obligations
The main objective of key-value database project is import XML files and save them in the database

using key-value relationship and export the data that is present in the database to the XML when

requested by the user. The project also should be able to scale the database size based on the

requirement. The explanation of obligations of this project is provided clearly in the below points.

1. To read input from the user and persist them in the database as key-value relationship with

date and time stamp

2. To write output to the user when requested using the key-value database with date and time

stamp

3. To read XML file from the user and enter into the database with key value relationship with

date and time stamp

4. To write the XML file to the user when requested by the user with date and time stamp

5. The data base also should be able to read the meta data in program files and act as a code

repository.

2.2 Organizing Principles

 We will be using the existing packages like DBEngine package, DBElement package,

DBExtensions package, Display and Utility extensions.

 Based on the requirement we may use the JSON and BSON format to store the stream of the

data

 Visual studio 2015 community version is used as IDE for this project

 We will also use parser package provided by Dr. Fawcett

6 | P a g e

2.3 Key architectural designs
Key-Value database tool uses the DB Engine package, DBElement package, DBExtensions package,

Display package and Utility extensions package developed by Dr. Facwcett.

DBEngine: DBEngine takes input of key and value pair. The DB engine consists of Insert API. The query

generated by the Query formatter is forwarded to the Executive module and the executive module

calls DB Engine.

DBelement: DB element package provides the interface to create a new key value pair which is passed

to the DB Engine. Executive package uses the DB element to create a instance of the key value pair

before inserting data into the DBEngine.

DBExtensions: DBExtensions package is dependent on DB Engine and DBElement package.

DBExtesnsion package is used to extend the functionality of the DBEngine and DBElement.

UtilityExtensions: UtilityExtensions package is not dedicated to single package and it includes all the

APIs that are for all the other packages.

Display: The display package is an API for DBExtensions, DBEngine, DBElement, DBExtensions and

UtilityExtensions package. The Display package is developed in such a way that it formats the output

of DBExtensions, DBEngine, DBelement, DBExtensions and UtilityExtensions.

7 | P a g e

3. Use Cases
All the stakeholders of the project accesses the key-value database tool on daily bases, the following

are the project stakeholders that are identified as of now.

1. Software developer

2. Software Architect

3. Testing team

4. Integration team

5. Project Management Office(PMO)

6. Technical team at Client

7. Client-End user

8. Quality Analyst

9. Quality Auditor

10. Any other project stakeholder who uses the tool

11. Other tools that uses API to interact with the Database

3.1 Software developer
As a Developer: On daily basis the software developer write multiple applications to access the

database and will use the database interface that is created by this project. As a developer the

software developer can integrate the database as part of a product or project and provide it to a third

part customer who will be actual end user.

As end User:

The software developer also will end user when the key-value database is used on daily basis to store

the programing files, to share the programming files with other developers etc.

The software developer also can develop other applications to interact with the key value database

using APIs.

3.2 Software architect
The software Architect uses the key-value database to set up the initial project setup before the actual

project development started. When the database is used as repository the software architect uses it

to access the program files. If the database is used for developing another product or project then the

project architect will use the key-value database to evaluate the performance of the product or

project.

3.3 Testing team
Testing team can use the database as a repository to keep track of the test cases and test results.

Testing team may use this project for testing such as to check if all the requirements are implemented

as per the requirements document that is provided during the project initiation.

3.4 Quality analyst/Quality Auditor
The quality analyst and the Quality Auditor will use the key-value database to check if the database

8 | P a g e

3.5 End User
The end user may use the database to save different data type of the data such as photos, videos, code

files etc. as part of their daily usage.

9 | P a g e

4. Application Activities
Key-Value data base analyze the metadata of the file to know some important information about the

data present in the file. The metadata provides the information about the author of the file, the

software package that the file is part of, other relations with other files and packages. In order to get

the metadata of the file, the XML file should be parsed for the required information.

4.1 Parsing the input file
The user provides the input file while starting the application. The user also provides in the metadata

of the file if he needs to modify the existing file in the repository or he wants to append to the existing

file in the database or he want to enter the new file in to the database.

The above information is extracted using the file parser by the Executive package.

4.2 Generate the Key-Value pair
After parsing the file the key-value pair is generated along with other important child keys. The key

value pair is used to identify if the key is already existing in the database. If the key is not available in

the database then a new key is created and the value is saved in the database. If the key is available

based on the information provided in the metadata the data is modified or appended.

4.3 Extracting the Key information
If the user wants to delete the record then he will provide only the key information in the metadata

and mark for delete. The executive package will extract the key by parsing the file and use the key to

delete the existing records. Incase if the user does not provide any information about the operation

to be performed then the database considers it as new key-value pair and saves in the database.

4.4 Persistence of Data
The database should also make sure that the data persists when modified and not ephemeral. The

persistence database will always preserve the earlier versions of the data that is modified and can be

accessible at any time by querying. As we know in code repositories and in social network when data

is changed it is very much required to retain the previous versions.

As we are planning to use the database for repository purpose and if possible we can also use the

database for social media and other web applications. Hence according to government’s rule in many

countries it is mandatory according to law to persist the data along with all earlier versions after

modification.

4.4 Saving Data to Database
The database saves the data once received from user, the key value table is created after saving the

data. If there is an update request then the data is updated at new address by persisting the previous

versions of the data. Now the new data exists at one address and the old data exists at another

address. Hence a new relationship between the old data, new data and the primary key to be created

along with the package information.

10 | P a g e

Once the value is update the database also should update the new package with the latest file. During

the retrieval of data the database should be able to refer to the old package as well as new package.

This is the main purpose of the data persistence and code repository. This feature is mainly useful

during implementation of social media projects and code repositories which we are planning to

implement in project 5.

4.5 Retrieving Data from Database
The database will return the package of program files, a single file and an individual value on query

from the user. The modification of data will be accurate and each version of the file will be linked to

respective packages. From the above figure we can understand that the obsolete versions of the file

or the key are retained even after updating the key-value pair. This feature makes the database robust

and can be used in any critical applications.

4.6 Heterogeneous Database
Unlike all other NoSQL databases the key-value database that is being implemented in this project will

perform better with all type of data types. This database will support the following types of

heterogeneity.

Technical Heterogeneity
This database will support multiple file formats, multiple communication protocols (to access

remotely).

Data model Heterogeneity

Semantic heterogeneity

4.7 Logging and Debugging
The database will support full activity logging and debugging. For every actions that is performed on

the database will be logged in the system.

The log report typically consist of the changed key values and the changed child relationships with the

package. For example if a key is changed from one package to another package then this complete

activity will be logged with user details. This feature of logging and debugging will help users to keep

track of the changes that happen on the database.

11 | P a g e

4.8 Dynamic Schema
The database will support dynamic schema which gives flexibility to the user. Since most of the

projects that are run in the real time industry are following agile process of development, it is very

much required that the schema of the database should be dynamic.

For example while the customer providing the requirements he is not sure how many users will use

the database and how much data inflow or outflow will be required in the future. Hence by

implementing the dynamic schema we can make sure that the growing data will not affect the existing

data.

The dynamic schema is also best at supporting unstructured data. In real time unstructured data is

very common and static schema cannot handle the unstructured data.

4.9 Sharding of files
The database in this project deals with big data and the size of the file or value of the key can be as

small as 1KB to 10petabytes. Since single system cannot handle such a huge data we implement

Sharding of huge files. Even though there are many types of sharding models and algorithms we

implement automatic integrated sharding.

In automatic integrated sharding we shard the file whichever is above some predefined size. However

the user will be notified before sharding and no additional learning or understanding of sharding is

required from user side as the database system can handle in such a way that the speed will remain

same.

4.10 Scheduling
The database scheduler schedules periodical data backup to make sure that the data is not lost in case

of system failure. The scheduler is also used to read the stream of input from the executive package.

As we know in big data the data can be as bigger such that the data keeps on coming and waiting in

the queue it is the duty of the scheduler to take care and handle multiple requests at the same time.

The scheduler also should make sure that all data queries and data operations are attended in equal

time. The scheduler will keep database stable and healthy.

4.11 Immutable Database from query results
The database on command saves the results of the query by creating a new immutable database. The

DBEngine creates immutable database on request from user. The immutable database holds the child

parent relationship of key-value pairs.

4.12 Zero configuration DB Engine
The database will be zero configuration database which means there is no configuration or installation

required by the user. The database will be folder with the executable file.

4.13 Error reporting
The database system will report error if the input XML file is not according to the format specified by

the database manual. The error reporting scenarios include if the XML file missing some mandatory

information or if the file is not according to the format specified by the database such improper XML

metadata tags.

12 | P a g e

4.14 Display Results
The final step after doing the operation that is required by the user is to display the result. When user

request for a new key-value entry the result displayed on the console will be the state of the database

before the operation and the state of the database after the operation. The display function also will

display the records that are modified and the state of the database to the console after user operation

is performed successfully. The display function also provides the error information such as no key

found in the file that is input, no author information found, no child key information is found, the file

is not part of any package etc. the error information will be discussed deeply in another document in

project 2.

13 | P a g e

5. Packages or Modules
The design of this project will result in the following packages or modules. Each module or package is

explained in detail.

5.1 Executive
This module acts like a controller module, this module controls and calls all other modules in this

project. The module receives the file and sends the instructions to Query Editor which analyses the

input file from the user and sends the valid data to the Query formatter. The Query formatter formats

a query with the input data. The Query formatter also generates the key value pair and send back to

the executive package. The executive package receives the response from the Query formatter and

checks if the query is to read the data or write the data. If the query formatted is read then the query

engine is invoked or if the query formatted is write then the DBEngine is invoked.

After receiving the inputs from the Query engine or DBEngine the executive module calls the display

module. The display module displays the result to either to console or XML file or GUI depending on

the user request.

14 | P a g e

5.2 Query Formatter
The Query formatter plays important role of making a query by taking inputs from the executer.

The input is the metadata provided by the user in the file. By using the meta data the query

formatter forms a query which can be understand by the Query engine and passes it to the

15 | P a g e

Executive package. Query formatter is also responsible for generating unique key value pair.

5.3 Query Editor
The responsibility of the Query editor is to take inputs from the executive package and read the key

value index and provide them as input to the Query formatter.

Executive package will request query editor in case the input is not understandable by Query

formatter. The query editor converts the raw form of the metadata and handovers to executive

package later the query formatter will be called.

16 | P a g e

5.4 Logger
The logger is very important package, the responsibility of the logger is to keep track of all the changes

that are done on the database for every operation.

The logger is controlled by executive package and it will save each change in the data base with the

time stamp.

17 | P a g e

5.4 Key Value package relationship index
The key value index package is called by the executive whenever there is change in the key value

relationship. The key value index will also have the details of the packages that the key is assigned to.

Sometimes if the Query editor requires any information about the relationships then key value

package interface will provide with the required information.

18 | P a g e

5.5 Query Engine
The responsibility of the Query Engine is to collect the list of files that are required for a package from

the executive task and provide the list to the DB Factory, the DB Factory will have the data of all the

file and it will revert back with the data that is requested by Query Engine.

The query engine evaluates the query that is requested by the executive package and provides it file

by file to the DB Factory package. The read operations happen through the query Engine.

5.5 DB Factory
DB factory is responsible for storing the data and maintaining in the memory. DB factory

communicates mainly with two packages one is DB Engine and another one is Query Engine. The Query

Engine queries the data elements that it want to read and provide the result to the user via executive

and display packages which can be understand from the package diagram. Query engine mainly

collects the data from the DB Factory and provides it to user. Whereas the DB Engine collects the data

from the executive package and provides it to the DB Factory which keep the data and persists the

data later when the scheduler runs.

The database factory will create a new database collection if required based on the user command.

19 | P a g e

DB Engine writes the data on command from the executive package whereas the Query Engine reads

the data from the DBFactory on command from the Executive package.

5.6 Memory Management
Memory management is the responsibility of this package. As there will be huge amount of data that

is writing into the database on daily bases, the memory management system will make sure that the

closely related data will be kept at nearby addresses in the memory. In future the memory

management package will also defragment the data. Defragmentation of the data will increase the

speed of the data access.

5.7 XML to DB
This module is responsible for converting the XML data to the JSON format or other feasible formats

to save in the memory. This is heard of the DB system which accesses the system memory.

5.8 Data Sharder
Data Sharder’s responsibility it to identify if the collection size is above certain size and split the file

into small files and persist it. The sharder is also responsible for keeping track of the addresses of the

data storage relevant to a collection.

Afeter sharding, the sharder generate the shard keys and share the shard keys across all the sharded

servers.

20 | P a g e

5.9 Scheduler
The scheduler receives the input time interval or number of writes from the executive package. Using

this trigger the scheduler will persist the changes.

The scheduler is capable of scheduling timed or event triggered backups of the database, timed or

event triggered persistence of database. The scheduler also will have flexibility of grouping similar jobs

and running them together. The scheduler package provides the log information to the logger to keep

in records. The log information contains the list of tasks that are run and the time stamp along with

the status of the jobs. The scheduler package can also be configured by the user.

Monitoring jobs: The scheduler is also responsible for monitoring the jobs until the jobs are

completed.

5.10 Display
Display package mainly receives input from the executive package. Based on the requirement the

executive package may request for console display or XML file output, or GUI display.

The Basic GUI display package receives input from the display package. The basic GUI display package

uses the .Net frame work to provide proper GUI display.

The console display package receives input from the display package, based on the input from the

display package the Console Display package displays the value content of a particular key. The console

package also displays the other information requested by the display.

The project also contains the XML generator which will generate the XML file when requested by the

user. This XML generator is embedded in the XML display package.

21 | P a g e

6. Critical Issues

6.1 Pluggable sharding strategy
The pluggable sharding strategy would be critical. As of now most of the databases are implementing

fixed or count based sharding strategy. In key value database since we are using the database for real

time big data applications we require to implement pluggable data sharding strategy which is complex

in nature and chances of losing the data.

Solution: In key value database the following pluggable strategies will be followed. The user can

configure and run the hash based sharding. While the user providing the input file to the key value

database a new XML tag will be provided to the user where the user can mention that for a particular

file the sharding should happen with predefined condition.

We can also design the server in such a way that the user cannot leave the sharding option blank when

providing the configuration to the server.

6.2 Multi Thread
As the database system is accessed from different locations and by multiple users at a single time,

serving all the users concurrently is challenging task. To solve this issue we will implement a multi

thread service system where all the requests are handled with equal priority and are served on

constant time.

Solution: A new task scheduler will be implemented to solve the issue with the multi thread

operations. When the database server serves multiple priority requests.

6.3 Distributed Architecture
Since the database will be handling huge files which are of peta byte data sometimes, we need to have

multiple servers for storing these data. Implementing distributed architecture where the data is saved

on different servers and maintained by multiple database systems can solve this problem but at the

same time it is challenging and critical in nature.

6.4 Performance for Big Data files
If the file input is of big size, the time taken by the database to process it and save it will increase. And

also if the output file requested by the user is of big data size then also the time taken by the database

to process will increase. How the tool ensures the time taken by the database for big files and small

files is same.

Solution: The database uses the technique data sharding. The data sharding will split the files which

are huge and saves them in different data collections using multi thread. To read the big data files

when queried by the user, using multi thread technique each file is processed independently and then

finally put together and provided as output to the user. Hence using the multi thread we will make

sure that the time taken to read and write the big data files is same.

6.5 Without GUI and Console how does user provide input
It is mentioned in the requirements that the tool will not have any GUI and Console interface. Without

any interface it will be difficult for the users to interact with the database.

22 | P a g e

Solution: The XML file that is read by the database will be designed with the tags which says what

operation the user want to perform. Using the tag <operation> the user can tell the database if he

want to read the record or delete the record etc. Incase if no tag is present the data base treats it as

new record and generate new key-value pair and save it in the database.

6.6 Maintaining relationships with old packages and new packages
If the child parent relationships are to be maintained in the database it can become complex to relate

the child parent relationship after few routines.

Solution: to make sure that the child parent relationships are maintained even if the database is

growing, the key-value database provides a feature which will allow the user to create a separate index

database up on request.

6.7 Data loss
Since the database is a complex software system there can be failures either due to the hardware or

software failure.

Solution: to avoid data failure we implement the data replication feature. Data replication is the

process of creating multiple copies of data at different server since the database support the

distributed architecture the data replication can be implemented.

23 | P a g e

7. Extended Applications

7.1 Extended application as Code Repository
The developed NoSQL database can be used for code repository by software companies to store the

code and access from multiple locations. Since the key value database has feature of maintaining the

child parent index the package structure of the code can be easily retained and accessed without

much hassle.

All of the above features makes the key value database a suitable database for implementing code

repository.

7.2 Extended application in social media
Since the key value database will be very fast and responsive, this database can be used for the real

time analysis of data (data analytics).

7.3 Extended applications in Internet of Things
The key value database is also well suited for storing the internet of things data as the database is

heterogeneous. The sensors provide different kinds of data logging, hence the Internet of things

applications require Heterogeneous database.

24 | P a g e

8. References
[1] Key Value Database requirements provided by Dr. Fawcett

http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures/Project1-F2015.htm

[2] Key value database project #2 requirement provided by Dr. Fawcett

http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures/Project2-F2015.htm

[3] NoSQL blog written by Dr. Fawcett

http://ecs.syr.edu/faculty/fawcett/handouts/webpages/BlogNoSql.htm

[4] Comparison of database management systems

https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-

systems-and-models

[5] DBEngine, DBElement, UtilityExtensions, Display code provided by Dr. Fawcett

http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Project2HelpF15/

[6] Heterogeneous Database information provided by wikipedia

https://en.wikipedia.org/wiki/Heterogeneous_database_system

http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures/Project1-F2015.htm
http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures/Project2-F2015.htm
http://ecs.syr.edu/faculty/fawcett/handouts/webpages/BlogNoSql.htm
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Project2HelpF15/
https://en.wikipedia.org/wiki/Heterogeneous_database_system

25 | P a g e

9. Appendix

9.1 DBEngine
The following class diagram will help to understand to the DBEngine package.

The DBEngine has insert function, getValue function and keys function.

Sample output of the DBEngine is provided for reference below.

26 | P a g e

27 | P a g e

9.2 DBElement Package testing
The DB element package class diagram and test output are shown below for understanding

purpose. The DBElement package has all metadata properties such as payload, time stamp, file

description, file name, children key details.

28 | P a g e

29 | P a g e

9.3 Display
The following are class diagram and the test execution of the display package.

30 | P a g e

The display package has the formatElement, makeLinear, makeMargin and showElement

functions and the display package collects input from the executive package.

