
Windows and .Net Threads
Jim Fawcett

Software Modeling

Copyright © 1999-2017

Windows API

• Create, style, and manage windows

• Manage files and directories

• Create and manage processes, threads,

and synchronizers

• Load and unload dynamic-link libraries

• Create and manage timers

• Read and write to the registry

Windows Resources—MSDN

• Windows System Services

• Processes and Threads

• Synchronization

• Using Synchronization

• Synchronization Reference

• System.Threading Namespaces

• System.Threading Namespace

• Thread Class

• System.Threading.Tasks Namespace

• Task Class

• Task<TResult> Class

http://msdn.microsoft.com/en-us/library/windows/desktop/ee663297(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686353(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686967(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686679(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/gg145014(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.threading(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.threading.thread(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd321424(v=vs.110).aspx

Other Threading Resources

• 7 Ways to Start a Task in .NET C#

• Best Practices in Asynchronous Programming

• Asynchronous Programming with Async and

Await – MSDN

• Event-Based Asynchronous Pattern

• Async in 4.5: Worth the Await

http://dotnetcodr.com/2014/01/01/5-ways-to-start-a-task-in-net-c/
http://msdn.microsoft.com/en-us/magazine/jj991977.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx
http://msdn.microsoft.com/en-us/library/ms228969(v=vs.110).aspx
http://blogs.msdn.com/b/dotnet/archive/2012/04/03/async-in-4-5-worth-the-await.aspx

Windows Processes

and Virtual Memory

• Windows processes are containers for:

• Threads—one primary thread at process start

• File handles

• Other windows objects

• Allocated memory

• Process Diagram

• Windows uses a paged virtual memory system

• Virtual Memory Diagram

process.pdf
MemoryMapping.pdf

Windows Objects

• Windows supports internal objects and provides an API to

access and manage them through handles.

• Kernel objects—named, secured, system-wide

• Devices, files, symbolic links, registry keys, threads and processes,

events, mutexes, semiphores, memory-mapped files, callbacks,

pipes

• User objects—GUI objects

• Window, menu, icon, hook, …

• GDI objects—drawing objects

• Brush, pen, DeviceContext, bitmap, metafile, …

Windows Objects and Handles

• A windows object is a data structure that represents a

system resource, e.g., file, thread, bitmap

• Windows objects are created and accessed using the Win32

API

• They reside in Kernel32.dll, User32.dll, or GDI32.dll

• An application accesses those resources through a

handle, usually returned from a Create function

• Each handle refers to an entry in an internal object

table that contains the address of a resource and

means to identify the resource type

Object API

• The Windows API provides functions which:

• Create an object, returning a handle

• Get an object handle using other information

• Get and set information about an object

• Close the object handle, possibly destroying the internal

object

• Objects are reference counted and will be destroyed when all

referring handles have been closed

• Kernel objects have security functions that manage

ACLs

Kernel Objects

• Kernel objects are operating system resources

like processes, threads, events, mutexes,

semaphores, shared memory, and files.

• Kernel objects have security attributes and

signaled state.

• A kernel object is always either signaled or unsignaled.

• An object in the unsignaled state will cause any thread

that waits on the object’s handle to block.

• An object in the signaled state will not block a thread

that called wait on its handle.

Threads

• A thread is a path of execution through a program’s code, plus

a set of resources (stack, register state, etc.) assigned by the

operating system.

• A thread lives in one and only one process. A process may

have one or more threads.

• Each thread in the process has its own call stack but shares

process code and global data with other threads in the process.

• Thus local data is unique to each thread.

• Pointers are process specific, so threads can share pointers.

Starting a Process

• Every time a process starts Windows creates a primary

thread.

• The thread begins execution with the application’s startup code that

initializes libraries and enters main

• The process continues until main exits and library code calls

ExitProcess.

• You will find demo code for starting a Windows process

here:

• http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/T

hreadsAndSynchronization/code/ProcessDemoWin32/

• Here is a demo for starting up a process using C#:

• http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/T

hreadsAndSynchronization/code/ProcessDemoDotNet/

http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchronization/code/ProcessDemoWin32/
http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchronization/code/ProcessDemoDotNet/

Scheduling Threads

• Windows is a preemptive multitasking system. Each

task is scheduled to run for some brief time period

before another task is given control of a CPU core.

• Unlike Unix and Linux, in Windows threads are the

basic unit of scheduling. A thread can be in one of

three possible states:

• Running

• Blocked or suspended, using virtually no CPU cycles, but

consuming about 1 MB of memory per thread

• Ready to run, using virtually no CPU cycles

Scheduling Activities

• A running task is stopped by the scheduler if:

• It is blocked waiting for some system event or resource

• Its time slice expires and is placed back on the queue of ready-to-run

threads

• It is suspended by putting itself to sleep for some time, e.g., waiting on

a timer

• It is suspended by some other thread

• It is suspended by Windows while the OS takes care of some critical

activity

• Blocked threads become ready to run when an event or resource

they wait on becomes available, e.g., its handle becomes signaled

• Suspended threads become ready to run when their suspend

count is zero

Scheduling Threads

Blocked and Suspended

TCB

TCB

TCB

TCB

TCB

General Registers

Stack Pointer

Instruction Pointer

FPU Contents

PCB pointer

Priority

Quantum (Time-Slice) remaining

Other Thread Specific Data

Thread Context Block

Address Space Information

Working Set Information

Other Process Specific State

Maintains:

 File and Heap Mappings

 Allocated Handles

Process Context Block

readied

ru
n blocked or suspended

Ready to Run

Highest TCB TCB TCB

Normal TCB

Lowest TCB TCB

Benefits of Using Threads

• Keep user interfaces responsive even if required

processing takes a long time to complete.

• Handle background tasks with one or more threads

• Service the user interface with a dedicated UI thread

• Your program may need to respond to high-priority

events, so you can assign that event handler to a high

priority thread.

• Take advantage of multiple cores available for a

computation.

• Avoid low CPU activity when a thread is blocked waiting

for response from a slow device or human, allowing other

threads to continue.

More Benefits

• Support access to server resources by

multiple concurrent clients.

• For processing with several interacting

objects the program may be significantly

easier to design by assigning one thread to

each object.

Using Threads to Avoid Blocking

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

Non-Blocking Communication in Asynchronous System

FIFO queue

processing

thread

receiver

thread

Potential Problems with Threads

• Conflicting access to shared memory

• One thread begins an operation on shared memory, is

suspended, and leaves the memory region incompletely

transformed.

• A second thread is activated and accesses the shared memory

in the incomplete state, causing errors in its operation and

potentially errors in the operation of the suspended thread when

it resumes.

• Race conditions occur when:

• Correct operation depends on the order of completion of two or

more independent activities.

• The order of completion is not deterministic due to use of

threads.

More Problems with Threads

• Starvation

• A high-priority thread dominates CPU resources,

preventing lower priority threads from running often

enough or at all.

• Priority inversion

• A low-priority task holds a resource needed by a higher-

priority task, blocking it from running.

• Deadlock

• Two or more tasks each own resources needed by the

other, preventing either one from running so neither

ever completes and never releases its resources.

UI and Worker Threads

• User interface (UI) threads create windows and process

messages sent to those windows.

• Worker threads receive no direct input from the user.

• Worker threads must not directly access a window’s member

functions. This will cause exceptions.

• Worker threads communicate with a program’s windows by calling

the Win32 API PostMessage and SendMessage functions.

• With modern GUI frameworks that is handled by calling

Form.Invoke or Dispatcher.Invoke passing a delegate to the UI

thread bound to a function that handles the worker’s data.

Creating Win32 Threads

• Call CreateThread(…) only if you won’t be using ANY language

libraries, as these are not initialized by Win32 API functions.

• HANDLE hThrd =

(HANDLE)_beginthread(ThreadFunc, 0, &ThreadInfo);

• ThreadFunc—the function executed by the new thread

• void _cdecl ThreadFunc(void *pThreadInfo);

• pThreadInfo—pointer to input parameters for the thread

• For threads created with _beginthread the thread function,

ThreadFunc, must be a global function or static member

function of a class. It cannot be a nonstatic member function.

• HANDLE hThrd = (HANDLE)_beginthreadex(// returns 0 on failure

pSecurity, stack_size, ThreadFunc, pThreadInfo, initflg, pThrd

);

• SECURITY_ATTRIBUTES *pSecurity – null for user priviledges

• unsigned int stack_size – size of stack to use, 0 gives default size

• ThreadFunc – the function executed by the new thread

unsigned _stdcall ThreadFunc(void *pThreadInfo); // returns exit code

• void *pThreadInfo – pointer to input parameter structure for use by ThreadFunc

• Enum initflg – 0 to start running or CREATE_SUSPENDED to start suspended

• Int32 *pThrdID – returns pointer to threadID if non-null on call, otherwise not used

• For threads created with _beginthreadex the thread function, ThreadFunc, must be a global function or static

member function of a class. It cannot be a nonstatic member function.

Creating Win32 Threads

Thread Priority

• You use thread priority to balance processing performance
between the interfaces and computations.

• If UI threads have insufficient priority, the display freezes while
computation proceeds.

• If UI threads have very high priority, the computation may suffer.

• We will look at an example that shows this clearly.

• Thread priorities take the values:

• THREAD_PRIORITY_IDLE

• THREAD_PRIORITY_LOWEST

• THREAD_PRIORITY_BELOW_NORMAL

• THREAD_PRIORITY_NORMAL

• THREAD_PRIORITY_ABOVE_NORMAL

• THREAD_PRIORITY_HIGHEST

• THREAD_PRIORITY_TIME_CRITICAL

Creating .Net Threads Using C#

• Thread t = new Thread(new ThreadStart(tProc));

t.Start()

• void tProc() is a static or nonstatic member function of

some class.

• Thread t = new Thread(new

ParameterizedThreadStart(tProc))

t.Start(inputArgument)

• where void tProc(object inputArgument) is a static or

nonstatic function of some class.

Thread Properties

• IsBackground—get, set

• Process does not end until all foreground threads have ended.

• Background threads are terminated when application ends.

• CurrentThread—get, static

• Returns thread reference to calling thread

• IsAlive—get

• Has thread started but not terminated?

• Priority—get, set

• Highest, AboveNormal, Normal, BelowNormal, Lowest

• ThreadState—get

• Unstarted, Running, Suspended, Stopped, WaitSleepJoin, ..

Shared Resources

• A child thread often needs to communicate with

its parent thread. It does this via some shared

resource, like a queue.

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

Synchronization

• A program may need multiple threads to share some data.

• If access is not controlled to be sequential, then shared

data may become corrupted.

• One thread accesses the data, begins to modify the data, and then

is put to sleep because its time slice has expired. The problem

arises when the data is in an incomplete state of modification.

• Another thread awakes and accesses the data, which is only

partially modified. The result is very likely to be corrupt data.

• The process of making access serial is called serialization

or synchronization.

Wait for Objects

• WaitForSingleObject makes one thread wait for:

• Termination of another thread

• An event

• Release of a mutex

• Syntax: WaitForSingleObject(objHandle, dwMillisec)

• WaitForMultipleObjects makes one thread wait for the elements of

an array of kernel objects, e.g., threads, events, mutexes.

• Syntax: WaitForMultipleObjects(nCount, lpHandles, fwait, dwMillisec)

• nCount: number of objects in array of handles

• lpHandles: array of handles to kernel objects

• fwait: TRUE => wait for all objects, FALSE => wait for first object

• dwMillisec: time to wait, can be INFINITE

Win32 Thread Synchronization

• Synchronizing threads means that every access to data shared between threads is protected

so that when any thread starts an operation on the shared data no other thread is allowed

access until the first thread is done.

• The principle means of synchronizing access to shared data within the Win32 API are:

• Interlocked increment

• Only for incrementing or decrementing integral types

• Critical section

• Good only inside one process

• Mutex (kernel object)

• Named mutexes can be shared by threads in different processes.

• Event (kernel object)

• Useful for synchronization as well as other event notifications

• Semiphore (kernel object)

• Allows a specified number of threads to use a resource

• SlimReaderWriter lock

• Supports concurrent reads while making writes and reads sequential

• Condition variable (kernel object)

• Used in conjunction with a critical section or mutex to signal an event that allows one or more threads to proceed.

.Net Synchronization

.Net wraps most of the Win32 synchronizers:

• Monitor

• Wraps a critical section and a condition variable to support both locking and notification

• Lock

• Encapsulates a monitor and try {} finally {} to ensure that the lock is released even if an exception is thrown

• Mutex

• Wraps the Win32 mutex

• ReaderWriterLock

• Wraps the Win32 SlimReaderWriter

• Interlocked

• Wraps the Win32 interlocked

• SpinLock

• Supports low overhead short-term locks

• Semaphore

• Wraps the Win32 semaphore

• WaitHandle

• Threads block by calling WaitOne on the handle. They are released by the kernel object to which the handle

refers.

Tasks and Async Await Pattern

.Net 4 introduced some new asynchronous programming

constructs centered on the Task class.

• Task.Run(…) runs a task defined by an action or lambda

that has no return value on a thread-pool thread.

• Task<T>.Run(…) runs a task defined by a Funct<T> or

lambda that returns an instance of T.

This topic is quite accessible if you look at some simple

code demos:

• Tasks, Threads, and Continuations

• Abstract Task Model

• WPF Thread Demos

../Code/Tasks_Threads_Continuations
../code/Tasks
../code/ThreadDemos

Appendix:
More Details on Some of the

Synchronization Operations

Win32 Interlocked Operations

• InterlockedIncrement increments a 32-bit integer as an

atomic operation. It is guaranteed to complete before the

incrementing thread is suspended.

long value = 5;

InterlockedIncrement(&value);

• InterlockedDecrement decrements a 32-bit integer as an

atomic operation:

InterlockedDecrement(&value);

.Net Interlocked—Atomic Operations

• static int count = 0;

• Interlocked.Increment(ref count);

• Interlocked.Decrement(ref count);

• Interlocked.Exchange(ref count, 1);

• Long cnt = Interlocked.Read(ref count);

Win32 Critical Sections

• Threads within a single process can use critical sections to ensure mutually

exclusive access to critical regions of code. To use a critical section you:

• Allocate a critical section structure.

• Initialize the critical section structure by calling a win32 API function.

• Enter the critical section by invoking a win32 API function.

• Leave the critical section by invoking another win32 function.

• When one thread has entered a critical section, other threads requesting entry are

suspended and queued waiting for release by the first thread.

• The win32 API critical section functions are:

• CRITICAL_SECTION critsec;

• InitializeCriticalSection(&critsec);

• EnterCriticalSection(&critsec);

• TryEnterCriticalSection(&critsec);

• LeaveCriticalSection(&critsec);

• DeleteCriticalSection(&critsec);

.Net Lock—Most Commonly Used

• static object synch_;

• Lock(synch_)

{

// use shared resource safely

// lock is released if exception is thrown in

// locked region

}

• Note: synch_ must be a reference type, as shown

here.

.Net Monitor

Used for locking and signaling

• static object sync_;

• Monitor.Enter(sync_); // enters protected region

• Monitor.Exit(sync_); // leaves protected region

• Monitor.Pulse(resource); // notifies waiting thread

• Monitor.PulseAll(resource);

• Mutually exclusive access to a resource can be guaranteed through the use

of mutexes. To use a mutex object you:

• Identify the resource (section of code, shared data, a device) being shared by two or

more threads.

• Declare a global mutex object.

• Program each thread to call the mutex’s acquire operation before using the shared

resource.

• Call the mutex’s release operation after finishing with the shared resource.

• The mutex functions are:

• hMutex = CreateMutex(0,FALSE,0);

• WaitForSingleObject(hMutex,INFINITE);

• WaitForMultipleObjects(count,MTXs,TRUE,INFINITE);

• ReleaseMutex(hMutex);

• CloseHandle(hMutex);

Win32 Mutexes

.Net Mutex

Used for system-wide synchronization

• Mutex mutex = new Mutex(false);

• mutex.WaitOne(); // enter protected region

• mutex.ReleaseMutex(); // leave protected

region

• mutex.Close(); // decrement object’s ref

count

• Events are objects which threads can use to serialize access to

resources by setting an event when they have access to a resource

and resetting the event when through. All threads use

WaitForSingleObject or WaitForMultipleObjects before attempting

access to the shared resource.

• Unlike mutexes and semaphores, events have no predefined

semantics.

• An event object stays in the nonsignaled stated until your program sets its state to

signaled, presumably because the program detected some corresponding important

event.

• Auto-reset events will be automatically set back to the nonsignaled state after a

thread completes a wait on that event.

• After a thread completes a wait on a manual-reset event the event will return to the

nonsignaled state only when reset by your program.

Win32 Events

• Event functions are:

• HANDLE hEvent = CreateEvent(0,FALSE,TRUE,0);

• OpenEvent – not used too often

• SetEvent(hEvent);

• ResetEvent(hEvent);

• PulseEvent(hEvent);

• WaitForSingleObject(hEvent,INFINITE);

• WaitForMultipleObjects(count,Events,TRUE,INFINITE);

Win32 Events

• static ManualResetEvent mre = new

ManualResetEvent(false);

• mre.Set(); // threads will not block on

WaitOne()

• mre.Reset(); // threads that call WaitOne() will

block

• mre.WaitOne();

• mre.close()

.Net Manual ResetEvent

