
SOFTWARE SYSTEM TAXONOMY

Jim Fawcett
CSE681 – Software Modeling and Analysis
Spring 2010



Agenda

 Taxonomy – An organization or catalogue

 Software Systems Taxonomy – parts of a 
catalogue of models:

 System Structure

 Software Studio Examples

 CSE681 Project #5 Examples

 MS Thesis Research Examples



The gap between theory and practice

in theory

is nowhere near as big as

the gap between theory and practice

in practice



Structuring Paradigms

 Computational
 Example - Scientific computing
 Focus on answers and views
 May be distributed by function but probably not by 

machine

 Event-Driven
 Examples - User Interfaces, Servers, Security
 Focus on state and state changes
 User Interfaces and (semi) Real Time systems

 Service Oriented
 Examples - Communication, Business services
 Focus on reliability and performance
 Usually network or web based



Software System Structures

 Client-Server

 Three-Tier

 N-Tier

 Layered

 Peer-to-Peer

 Collaborative

 Service Oriented

 Agent Based



Client-Server

 Client initiates, server responds
 Servers are passive

 Only provide replies to specific request types

 Server provides a service
 Web server, file server, network storage

 Examples:
 Web sites – Amazon, ecs.syr.edu

 Web services – google maps

 http://www.ecs.syr.edu/faculty/fawcett/handouts/
CSE681/Presentations/IntroductionToWeb.ppt

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Presentations/IntroductionToWeb.ppt


Three-Tier (really four)

 Presentation
 What user sees, may have many distinct views
 Initial rendering determined solely by server
 Client  (Javascript and Ajax, for example) can provide 

subsequent local as well as server activity

 (Often Implicit) Control
 Responds to user inputs
 Routes events to handler actions

 Application (object-based)
 Implements a model of what the user views and 

manipulates

 Data (usually table-based)
 Manages creation, retrieval, update, delete (CRUD)



Presentation and Control

 Desktop

 Windows forms, WPF, Java Swing, gtk+

 Web Application

 Asp, Asp.net, Asp.net MVC, Silverlight with WPF, 
Java with Servlets, …

 Mobil Application

 Thin versions of the Web Application technologies

 Ajax

 Round-trip data transmission mechanism, 
orthogonal to the above. 



WinForms, WPF, Asp.Net

 Make control implicit, and encourage tight 
binding

 Two kinds of binding
 Bind view tightly to event handling – one to one 

correspondence between events and handlers.
 Different views may need the same event handling, but it 

is hard to share event handlers across views.

 Bind directly to data in event handlers.
 WPF has a lot of infrastructure to support binding 

controls to data.

 But we may have many views, application 
modes, and data sources.
 Tight binding makes it hard to avoid repeating code.



Separation of Concerns

 Except for the simplest of applications it’s not 
a good idea to bind presentation, control, and 
data together.

 There often are many views, more than one 
application mode, many sources of data.

 If we bind these all together we get spaghetti

 Very hard to test, hard to maintain, hard to 
document.



Model-View-Controller

 MVC Separates concerns:

 Directly supports multiple views and multiple 
application scenarios

 Users request actions, not resources
 Give me this view into model, not this web page



MVC – More Realistic

 Views and Models usually have some 
substructure, e.g.:



View – View Model

 A view is what gets rendered

 A view model is an abstraction that:

 Defines resources that many be used in several places.

 Defines styles that may be used in several places

 Defines an object model for the application to 
manipulate

 In some implementations of MVC:

 Controller updates the model

 View subscribes for update events from the model.



Application vs. Data Models

 Application model

 Defines classes for all the entities a user knows and 
cares about, e.g., orders, customers, products, etc.

 Data model

 Defines wrapper classes for tables and stored 
procedures

 Manages connections

 Object to Relational Mapping

 Relationships between application objects and data 
objects.



Applications of MVC

 Asp.Net MVC (Web application, .Net environment)

 Released as part of a service pack for .Net 3.5

 Is an official part of .Net 4.0 framework with project wizard available in 
Visual Studio 2010.

 Microsoft Composite UI Application Block (Desktop, .Net)

 http://richnewman.wordpress.com/2008/02/23/model-view-controller-
explained-introduction-to-cabscsf-part-22/

 http://msdn.microsoft.com/en-us/library/aa480450.aspx

 JavaEE6 (Web applications, java environment)

 http://java.sun.com/javaee/

 http://programmaremobile.blogspot.com/2009/01/mvc-design-pattern-
in-java-ee-eng-ver.html

 http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93co
ntroller

http://richnewman.wordpress.com/2008/02/23/model-view-controller-explained-introduction-to-cabscsf-part-22/
http://msdn.microsoft.com/en-us/library/aa480450.aspx
http://java.sun.com/javaee/
http://programmaremobile.blogspot.com/2009/01/mvc-design-pattern-in-java-ee-eng-ver.html
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


N-Tier Structure

 So, the three tier MVC has morphed into a 
five tier V-VM-C-AM-DM

 View – what gets rendered

 View Model – an abstraction of the view

 Controller – routes View events to handlers in the 
Application Model

 Application Model – classes that model the 
“business” logic

 Data Model – models data storage tables

 Database, XML file, custom data structures



Layered Structure

 Provides a structure based on:

 System Services – things the user doesn’t think 
about

 Communication, storage, security, file caching, …

 User Services – things the user manipulates as 
part of the use of the system

 Input, Display, Check-in/Check-out, …

 Ancillary – Things that are not part of the system 
mission but are necessary

 Logging, extension hooks, test hooks, …



Peer-to-Peer

 Distribution of parts that cooperate on a mission 
by sending each other commands and messages.
 Parts may or may not be identical, but probably have 

identical layered system services

 Usually part of a collaboration system

 May have a “distinguished” peer

 Development attempts to provide one set of core 
services and build peer personalization on top of that

 Example:
 Software Matrix, Gosh M.S. Thesis, 

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/softwarematrix.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/softwarematrix.htm


Collaboration System

 System that focuses on sharing of processes and 
products among peers with a common set of 
goals.
 Primary focus is organizing and maintaining some 

complex, usually evolving, state:
 Software development baseline
 Set of work plans and schedules
 Documentation and model of obligations
 Communication of events

 Example:
 Collab – CSE784, Fall 2007, 

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm


Example Collaboration System



Service Oriented

 System composed of

 Set of autonomous services

 Software glue that binds the services together

 Focus on

 Reliability, availability, compos ability 

 Example:

 VRTS – CSE784 Project, Fall 2008, 
http://www.ecs.syr.edu/faculty/fawcett/handouts/
webpages/Vrts.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.htm


Agent-Based

 System uses Software Agents
 Semi-autonomous, mobile, task oriented software 

entities
 May be scheduled
 Provide scriptable user specific services

 Collect information from a large set of data
 Perform analyses on changing baseline and report
 Conduct specific tests
 Make narrowly specified modifications to baseline

 Example:
 CSE681 Project #5, summer 2009, 

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE
681/Projects/Pr5Su09.doc

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc


Enterprise Computing combines 
Structures

 Enterprise computing binds together a business 
with its partners, suppliers, and customers.

 May integrate many functions:

 Inventory control, order processing, product 
disclosure, product design collaboration.

 Likely to be peer-to-peer with “distinguished” 
peer that coordinates activities.

 Partners work together through a collaboration 
subsystem.

 Uses web-based service oriented architecture.



Project #5
 Peer-to-peer?

 May initiate analyses from client
 May schedule analyses and notify users of results

 Collaborative?
 QA, Management, Developers, and Architects all care about the 

analyses and results.
 How do we overtly support collaboration?

 Service Oriented?
 Communication and Notification are probably service-based

 Layered?
 If we extend by sending libraries to remote machines to be run 

from tool holster, we may want to have the holster provide 
execution services – a sandbox – to enhance security

 Agent-based?
 We probably want to schedule tests, tailored to specific users, 

e.g. QA, team lead, architect.



Software Studio Examples

 All of these were designed, built, and delivered 
by CSE784 classes.
 VRTS – Virtual Repository Testbed Servers,  Fall 2008, 

http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/Vrts.htm

 Cserv – Collaboration Server, Fall 2007 
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/CServ.htm

 RSA – Remote Software Assistant, Fall 2006, 
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/RSA/rsa2006.html

 RTBS – Repository Testbed System, Fall 2005, 
http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/RepoTB.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Vrts.htm
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/RSA/rsa2006.html
http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/RepoTB.htm


CSE681 Project #5 Examples

 ABSA – Agent Based Software Assistant, Su09
 Agents running on Repository, Testbed, and Tools

 VDS – Virtual Display System, F08
 Large display system driving Repository, Testbed, 

Collaboration servers

 ABQATS – Agent Based Quality Analysis and Test 
System, Su08
 Agents supporting Test System

 Cserv – Collaboration Server system, F07
 Collaboration server with repository and testbed in context.

 ADSCS – Agent based Distributed Software 
Collaboration System, Su07
 Agent based support for collaboration



Master’s Thesis Research 
Examples

 The following are all based on Software 
Matrix structure – Autonomous cells often  
used with mediator

 Software Matrix – Gosh, 2004

 Self Healing Systems – Anirudha, 2005

 Cross Platform Development – Appadurai, 2007

 Model-Driven Development – Patel, 2007

 http://www.ecs.syr.edu/faculty/fawcett/hand
outs/webpages/research.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm


Software Matrix Concept



The End


