
Software Architecture
Jim Fawcett

Software Modeling

Copyright © 1999–2017

Definitions

• “An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces … together with their
behavior as specified in the collaborations among those
elements, …”[1]

• “… abstract away some information from the system … and yet
provide enough information to be a basis for analysis, decision
making, and hence risk reduction.”[2]

• “…designing and specifying the overall system structure
emerges as a new kind of problem. Structural issues include
gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment
of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and
selection among design alternatives.”[3]

References

1. Booch, Rumbaugh, and Jacobson. The UML

Modeling Language User Guide. Boston: Addison-

Wesley, 1999.

2. Bass, Clements, and Kazman. Software

Architecture in Practice. Boston: Addison-Wesley

1997.

3. Shaw, Mary, and David Garlan. An Introduction to

Software Architecture. In Advances in Software

Engineering and Knowledge Engineering, volume

I, ed. V. Ambriola and G. Tortora. World Scientific

Publishing Company, 1993.

Definitions of Software Parts

• Class:

• C# language construct that groups methods and data to satisfy a

single responsibility

• Package:

• Single C# file with prologue comments, class definitions, and test stub

• Module a.k.a. subsystem:

• A collection of packages that focuses on a closely related set of

operations

• Program:

• A set of packages or subsystems that builds to create an executable

• System:

• A set of cooperating programs that collaborate to provide some useful

facility

Architecture: Our Definition

• Software architecture

• An abstraction for a software part (system, program,

package, class) that focuses on uses, structure, issues, and

risks

• Uses: How users (people and other software) interact with a

part and how the part responds

• Structure: The collection of parts and their interactions and

dependencies

• Issues: Things that developers are concerned about, like

complexity for a large system, ease of use, robustness

• Risks: Potential for unwanted results, often related to

performance, safety, and financial and security threats

Intent

• When we develop software, we want our software to

have an architecture developed explicitly, not

accidentally.

• Its purpose is to allow us to think critically about a

product we are developing before committing to code.

• For large systems an architecture may be represented

by a, possibly large, document.

• For smaller systems and programs it may be presented

on a web page or small collection of diagrams and

notes, bound together in some form of accessible

container.

Architecture Level

• Systems

• We usually think of an architecture as describing some

large, distributed system.

• Packages

• But packages also have architectures: uses, users,

structure, and issues.

• Package structure relates to the package’s classes and

how they interact.

• Classes

• Even a class has an architecture defined by its

methods, data structures, and how they interact.

What Is Software Architecture?

• The architecture of a software system captures major features and

design ideas for a software development project.

• Describes relationship of users with the system

• Describes structure and organizing principles of the system

• Major partitions within the system and their interfaces

• Responsibilities of, and resources needed by, each partition

• Design concepts: data structures, algorithms, data flows that help developers

understand and implement their piece of the system

• Identifies major threads of execution

• A thread is the sequence of activities that result from some system event.

Examples are system startup, response to operator requests, and processing of

errors.

• Identifies critical timelines and risk areas

• A timeline is a time-based budget for critical threads.

• A risk area identifies objectives and requirements that will be difficult to meet

under the current architectural and design concept or susceptibility to threats.

Architectural Concerns

• Software architecture is concerned with:

• Goals:

• Main objectives of the system

• Uses:

• How people and other software will interact with the system

• Tasks:

• Activities for a system and its major partitions

• Partitions:

• Subsystems, packages, and classes that make up the system

• responsibilities

• Interactions:

• The relationships and data flows between partitions, and assumptions that partitions have
about each other

• Events:

• Any occurrence that affects system activities

• Views:

• Appearance of the system to users and its designers

• Performance:

• Efficient use of computer resources—processor cycles, network bandwidth, memory

End of Asynchronous Presentation

Please read the remaining slides, where

each of the architecture concerns are

discussed, before joining the first

synchronous session.

Uses
• Uses describe the way users and other software components interact with the

system.
• What is the user trying to accomplish?

• What are the required inputs that the user supplies?

• What are the system outputs that the user expects?

• What controls will the user want to affect system operation?

• Uses are often developed as scenarios, called use cases.
• Each scenario describes one or more of the following:

• User roles, e.g., developer, manager, quality assurance.

• Mode of operation, e.g., data collection, data analysis, data presentation.

• Responses to specific important events, e.g., initialization, user inputs, computational errors,
system output.

• Are there effective uses that go beyond the system specification but would be
relatively easy to implement?
• Can we select a structure that will be easy to extend to these new applications

without significant impact on meeting the current requirements?

• This could result in efficient development of new products and services.

• Impact on design
• How will the identified uses affect the structure of the system and its design?

Tasks

• Tasks are a high-level list of the activities that the system
will need to carry out.
• First developed for the system as a whole.

• Later, allocated to the major system partitions.

• Tasks are usually presented as lists and in activity
diagrams.
• Activity diagrams are like flow charts but at a higher level.

• They describe activities that are important for the system or its
major partitions.

• Activity diagrams show required sequencing and synchronization of
tasks.

• When software is implemented, tasks allocated to each package
are described in the package’s manual page.

Partitions

• Partitions represent the grouping of system activities into

logical and physical entities.

• Package and module diagrams show the physical packaging of

system processing into files.

• Activity and data flow diagrams represent the partitioning of system

activities into logical processes, showing the flow of information

between the external environment and each process.

• Classes show the logical partitioning of system data and

processing into low-level program constructs.

• Partitions are the second most important part of the

architecture concept, after the definition of its tasks.

• Sequence of concept development is often: (1) uses, (2) tasks, (3)

partitions, (4) interactions, (5) events, and (6) views.

Interactions

• Interactions describe the relationships between system

partitions. They are described by:

• Data flow diagrams:
Used in the early phases of architecture and requirements development

• Package diagrams:
Describe static relationships between the system’s physical partitions

• Class diagrams:
Describe the static relationships between the system’s logical components

• Event trace diagrams:
Show the dynamic relationships between system components

• Structure charts:
Describe the relationships between the system’s functions

• State charts:
Describe the dynamic relationships between the system’s computations

Events

• Events describe specific occurrences to which the system must

respond, or that affect its modes of operation.

• Events are critically important for real-time systems, e.g., systems that

must respond to asynchronous events from the outside environment.

• For these systems, architecture development may revolve around the

definition of critical threads.

• A thread, as defined by the architecture concept, is all the processing that results

from a specific event, e.g., a radar detection, user input, power on, computational

error.

• Many threads are defined, then sorted by importance, relative to the system

requirements. The architecture isn’t complete until processing that will support

system requirements for each of the critical threads is defined.

• Threads are usually described by activity and/or event trace diagrams.

• In some non-real-time systems events play only a minor role in developing

the system architecture.

Views

• Views are used in two ways:

• Views describe the user interface as it appears to the

user.

• Layouts of controls and screens.

• Screen shots showing what the user will see when entering data.

• Screen shots showing what the user will see when observing

operation.

• Each of these views is accompanied with text describing how the

user interacts with the controls and screens.

• Views also describe the most important data structures

and algorithms as they appear to the developer:
• Data structure diagrams are ad hoc diagrams that show how data

elements relate to each other.

Performance

• Level of communication affects performance by orders of magnitude:

• Within a process

• Between local processes on a single machine

• Between machines in a network

• Between networks, e.g., across the Internet

• Lazy communication:

• Send information only when needed

• Send only the specific information needed

• Data caching:

• Store information locally so that it need not be requested repeatedly

• Minimize remote connectivity:

• Connections consume threads, CPU cycles, memory

• Make connection time least necessary to complete request, then

disconnect.

Analysis
• Analysis of the architecture of a software system entails:

• Analysis of scale

• How many users, files, storage size, working set size?

• Analysis of load

• Number of concurrent users, open files, open connections

• Peak and average data flows between process, machines, networks

• Analysis of timelines

• How long to initialize and perform key operations?

• Analysis of function

• What tasks and operations are essential?

• How should they be organized?

• Logical organization is easier to understand, develop, and maintain

• Data flow often dominates performance

• Analysis of risk

• High-risk tasks and operations

• Means of risk abatement

• What steps can we take to minimize the impact of risk areas?

