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Queuing Analysis 
 

I. Basic Models 
 
Many software systems use queues.  Event driven systems use queues to collect inputs 
from many sources, e.g., keyboard, mouse, other devices, and multiple threads running 
in a program.  Queues are used to allow event generators which may be bursty to avoid 
waiting for the event processor to finish with a prior event before accepting the next.  
The bursty source simply deposits its event message in a queue and goes about its 
business while the event processor withdraws event messages from the queue when it 
is ready.  These notes are concerned with a simple queuing model and relatively 
elementary analysis of its performance.  The analysis will use some basic notions from 
probability theory.  You will find a quick survey of those ideas in the Appendix. 
 
Assume that we have a queue with a constant average rate of arriving messages, .  

Our computer program can process each message with a constant average service rate, 
.  

 
 
 
 
 
 
 
We represent the state of the queue with the following diagram, where the kth state 
represents a queue holding k messages: 
 
 
 
 
 
 
 
 
 
 
 
 
Since messages arrive at a rate of  messages per unit time then, given that the queue 

is in state k, the queue will change from k to k+1 at the same rate, since a single new 
arrival will add one to the k messages waiting in the queue.    
 

 
arrival rate service rate

queue

0

queue states

1 2 k k+1

     

     
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The average rate out of state k is, therefore, p(k), where p(k) is the probability of 

being in state k.  If the queue has k messages waiting, when a program finishes 
handling a message it grabs another off the queue and the queue moves to state k-1.  
So, the average rate of changing from state k to k-1 is p(k), since  is the average 

rate of servicing messages.   
 
To proceed with this analysis, we need to know something about the random processes 
that govern arrivals and servicing.  Let’s focus on arrivals.  If we start with a finite 
interval of length T and suppose that n messages are uniformly distributed in that 
interval, then we have a situation like that shown below. 
 
 
 
 
 
 
 
 
 
 
 
The probability that any single point lies in the interval of length t is just: 
 
  pe = P1(t,T) = t/T 
 
And the probability that k of the n points lies in the interval of length t is just: 
 
  Pk(t,T) = Bn(k) pe

k(1-pe
n-k) 

 
Where Bn(k) is the binomial coefficient, e.g.: 
 
  Bn(k) = n!/(k!(n-k)!) 
 
Now, let’s let the length of the interval go from T to infinity and increase the number n 
of points so that = N/T, the density of points, stays fixed.  It is fairly easy to show1 

that, for constant , this binomial distribution tends, as T goes to infinity, to the Poisson 

distribution: 
 

  P(k, t) = (t)ke-t/k! 

 
 

                                                 
1 “An Introduction to Probability Theory and its Applications”, 2nd Edition, William Feller, Wiley, 1957 

T
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This is the probability that k points are found in an interval of length t, when  is the 

density of points on the line. 
 
 

Comparison of Binomial and Poisson Distributions
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II. Infinite Queue Analysis 
 
We shall model the arrival process by p(k, t) and the service process by p(k,t).  Now, 

consider first an empty queue with a message arrival rate of .  Then, the probability 

that the queue stays empty for t units of time is just: 
 

 p0(t) = p(0, t) = e-t 

 

The rate of change of this probability is: 
 
 d p0(t)  / dt = -  e-t  = -  p0(t) 

 

Now, the probability that our queue is in state 0 at time t + t is: 

 
 p0(t+t) = p0(t) e

-t + p1(t) t e-t + negligible probabilities 

 
The first term on the right is the probability that we have no messages waiting at time t 
times the probability that we get no new messages in time t2.  The second term is the 

probability that we have one message waiting at time t times the probability that it gets 
serviced in time t2, sending the state back to zero waiting messages.  We are going to 

let t become infinitesimal, so the probabilities that we might have more than one 

waiting message at time t and they all got serviced is neglibible. 
 
The preceding expression is just an application of Bayes Law: 
 
 P(A) = P(A/B)P(B) + P(A/C)P(C), where P(B) + P(C) = 1 
 
Here, the mutually exclusive probabilities are P(B) = p0(t) = probability that queue is in 
state 0 and P(C) = p1(t) = probability that the queue is in state 1, since we are 
neglecting the higher states which occur with vanishingly small probability for very 
small t.  The conditional probabilities are P(A/B) = e-t, the probability that we stay in 

state 0 provided that we are already in state 0, and P(A/C) = t e-t, the probability 

that we move from state 1 to state 0, given that we were in state 1. 
 

Dividing through by t, we have: 

 
 (p0(t+t) - p0(t)) / t = (1 - e-t) p0(t) / t +  e-t p1(t) 

 

and, as t 0, we have: 

 
 d p0(t) / dt = -  p0(t) +  p1(t) 

 

                                                 
2 The Poisson model implies that these are independent events, so the probability that we are in state 0 and don’t 

leave is the product of those two probabilities. 
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This is a first order linear coupled differential equation in queue state probabilities.  
Applying exactly the same reasoning to each of the states, we get the general model 
for queue states: 
 
 
 
 
 
 
 
 
 

 d pk(t) / dt =   pk-1(t) - ( + ) pk(t) +  pk+1(t) ,   k > 0 

 
 d p0(t) / dt = -  p0(t) +  p1(t) ,   k = 0 

 
We can use this coupled (infinite) set of first order linear differential equations to solve 
for the probabilities of being in any state at any given time, given some initial set of 
state probabilities, e.g., p0(0) = 1 and pk(0) = 0 for k>0. 
 
What we are usually interested in, however, is the steady state performance of the 
queue.  In steady state, all of the probabilities are constant, provided, of course, that a 
steady state exists.  Then, we have a coupled set of linear algebraic equations to solve: 
 
 (1a) 0 =   pk-1 - ( + ) pk +  pk+1 ,   k > 0 

 
 (1b) 0 = -  p0 +  p1 ,   k = 0 

 
Using these relationships and the fact that the sum of the queue state probabilities 
must be 1: 
 
 (1c)  pk = 1 

 
After a little bit of algebraic manipulation of these equations, we find that: 
 
 (2a) p0 = 1 -  ,   =  /  (2b) pk = k p0 

 

The average queue length is: 
 

(3) N =  k pk  =  / 1 -  

 
And the response time, i.e., the average time a message spends in the queue and being 
serviced is: 

 (4) R = N /  

0
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III. Finite Length Queue Analysis 
 
For a finite queue, we need to understand what happens if, when the queue is full, a 
new message arrives.  Our model will be that we simply discard the message.  For this 
case our queue state model looks like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
With some rather tedious algebraic manipulations, and series summations, we find that: 
 
 (5a) p0  = (1 - ) / (1 - n+1)  

 
 (5b) pk = k p0 

 

The rate at which arriving messages are lost is: 
 
 (6) rate of lost messages =  pn 

 
and the average queue length is: 
 
 (7) N = ( (1 - n)  - n(1 - ) n+1 / (1 - )2 ) p0 

 
As before, the response time is: 
 

 (8) R = N /  

 
 
 

If we plot the average queue length versus load, , we get the graphs shown on the 

next page for an infinite queue, and for finite queues of maximum length of 10 and 20 
messages. 
 
 
 
 

0

queue states

1 2 n

   



   



 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This plot tells us that if the queue load factor rho becomes much larger than 0.5 then 
the average queue length and response time for messages in the queue get large very 
quickly.  When rho becomes 1.0, the queue will no longer reach a steady state, but will, 
in fact, grow in length as long as messages continue to arrive. 
 

IV. Practical Analysis 
 
So how do we use all this stuff?  The process almost always boils down to this: 
1. Build a load model that describes the input messages and analyzes their average 

arrival rate, usually by some conservative “back-of-the-envelope” calculations.  
See the later parts of the Software Architecture notes discussed in the first 
lecture. 

2. Build a prototype of the message processing software and analyze its average 
service rate.  We almost always have to measure real software operation.  It just 
is not feasible to estimate the running time of software that does not yet exist.  
This does not mean that we have to build a complete servicing system.  We just 
build enough to get an estimate of the upper bound of the average service time. 

3. Compare the arrival rate to the measured service rate.  We want that ratio to be 
no larger than about 0.25 or we are likely to be in trouble. 
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V. Priority Queues 
 
An accurate analysis of priority queues is relatively involved, so we will present here a 
simple approximation that works quite well in practice.  Consider the diagram, shown 
below.  The three queues collect messages of three different priorities, high, medium, 
and low. 
 

h h

arrival rate service rate

queue

m m

arrival rate service rate

queue

l l

arrival rate service rate

queue  
 

 
Assume that a single processor, in one program, is servicing all three queues.  Only the 
high priority queue will be serviced until it is empty.  Then, as long as it stays empty the 
program services the medium priority queue.  The low priority queue is serviced, if and 
only if, both of the other queues are empty.   
 
As a consequence of this policy, our previous analysis applies exactly to the high priority 
queue.  Since the medium priority queue is only serviced when the high priority queue 
is empty, the effective service rate for the medium priority queue is: 
 
  

μm-eff = μm Ph0 

 
Here, μm-eff  is the average rate at which medium priority messages are processed when 
high priority messages get processed first, and μm is the average rate at which medium 
priority messages are processed if they are the only messages that arrive, e.g., they 
have the processesor’s full attention.  Finally, Ph0 is the probability that the high priority 
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queue is in the empty state.  With this “effective” service rate, the analysis of the 
medium priority queue is carried out according to the standard M/M/1 model. 
 
Similarly, for the low priority queue: 
 

   μl-eff = μl Pm0 

 
where μl-eff is the effective low priority service rate, μl is the rate if the high and medium 
queues are always empty, and Pm0 is the probability that the medium priority queue is 
empty, and analysis is carried out according to the M/M/1 model. 
 
So, in conclusion, we analyze the priority queues using the simple queue analysis with 
the modified service rates for the medium and low priority queues, given above. 
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VI. Feedback Queues 
 
A feedback queue has the structure shown in the diagram below.  When messages are 
processed, some messages need to be sent back to the input for processing again, with 
probability q. 

eff 
arrival rate service rate

queue



arrival rate

q

 

In steady state, the flow rate out of the queue must equal the flow into the queue.  Further, the 

flow rate of messages sent back for processing again will be q times that rate, so the net rate of 

messages into the queue will be: 

 

  q
q effeff




1




 

 

Analysis of the M/M/1 queue was based on the Poisson probability model.  It has been shown 

by Jackson that the input to the queue is not Poisson, but that because the basic independence 

of arrival structure has not changed, the same analysis applies.  So we can analyze the 

feedback queue using the same equations developed for the simple queue, simply adjusting the 

input rate as shown above. 
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VIII. Appendix – A Tiny Bit of Probability 
 

1. Basic Probability 
a. frequency of occurrence 
b. ensemble versus sample statistics, ergodicity 

2. Laws of Probability 
a. Independent events 
b. Conditional Probability 
c. Mutually Exclusive Events 
d. Bayes’ Theorem 
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Basic Probability 
 

Definition 1 – Sample space 
A sample space is the set of possible outcomes of an experiment.  An example is the 
set of outcomes of flipping a coin three times.  S is the sample space for this 
experiment: 
 
 S = { hhh, hht, hth, htt, thh, tht, tth, ttt } 
 
An event is a single point drawn from this sample space, e.g., hth. 
 

Definition 2 – Probability 
Probability is the expected frequency of occurrence of an event in an experiment that is 
repeated an arbitrarily large number of times.  If we flip an unbiased coin N times, we 
expect that h will occur approximately 0.5 N times.  As N gets progressively larger the 
approximation gets better and better.  Here are the outcomes of a sequence of coin 
tosses3: 
 
  Hhhtthhthhhhttthhhhtthtthhththtthtttthhhhtththhtttthtthhhhtththtt 
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3 You would think that an instructor would have better things to do with his time than flip a coin 65 times. 
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Ensemble versus Sample Statistics,  
Stationarity and Ergodicity 
 
We can imagine an experiment in which a single person flips a coin a large number of 
times, say 1 million times.  We can also imagine an experiment in which we have 1 
million people who all agree to flip a coin once and communicate to us the results. 
 

Definition 3 – Sample Statistics 
The first case is an example of a Sample Statistics experiment.  The outcomes are all 
derived from a single process, evolving in time. 
 

Definition 4 – Ensemble Statistics 
The second is an example of an Ensemble Statistics experiment.  The outcomes are 
each derived from a separate process and all of the processes can, but do not have to, 
occur concurrently. 
 

Definition 5 – Stationary Process 
If, every time we repeat these experiments we get the same average behavior we say 
that the statistics are stationary.   
 

Definition 6 – Ergodic Process 
If the average behavior of the Sample Statistics is the same as the average behavior of 
the Ensemble Statistics we say that the flipping process is Ergodic.  In a stationary 
ergodic process we can expect that sample statistics will converge to ensemble 
statistics.  That is what happened in my coin flipping experiment.  The probability 
estimate (really the average of 1 and 0 values) converged to the expected probability, 
0.5. 
 

Notation 
In the following we will denote the set of all possible outcomes of an experiment by S, 
the experiment’s sample space. 
 
Subset: 

We denote a subset of events with the notation: A  S. 

 
Set Union 

The set of points in either A or B:   e  A or e  B or both    e  A  B 

 
Set Intersection 

The set of points common to A and B:   e  A and e  B   e  A  B 
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Laws of Probability 

 

Conditional Probability 
The conditional probability of some event is the probability of the event, given that 
some other event has occurred.  If a and b are two events, the conditional probability, 
P(a / b), is the probability that a occurs given that b has already occurred. 
 
For a coin flipping experiment consisting of three flips: 
 
 S = { hhh, hht, hth, htt, thh, tht, tth, ttt } 
 
The probability that only one head occurs given that the first toss was a tail: 
 
 P(htt or tht or tth / txx) = P(tht) + P(tth)  = 2/8 
 
 
Law of Conditional Probability: 
 
 Events:  P(a and b)  =  P(a / b) P(b)  =  P(b / a) P(a) 
 

 Sample Spaces: P(A  B)  =  P(A / B) P(B)  =  P(B / A) P(A) 

 
 
 
For the experiment above we can compute the probability that there are two heads in 
the sequence of three flips and the first was a head: 
 
 P( (hht or hth or thh) and hxx )  
                 = P(hht or hth or thh / hxx)4 P(hxx)  =   2/4 * 4/8 = 2/8 
                 =  P(hxx / hht or hth or thh) P(hht or hth or thh) = 2/3 * 3/8 = 2/8 
 
In this simple example it is obvious that: 
 
 P(hht or hth or thh and hxx) = P(hht or hth) = P(hht) + P(hth) = 2/8 
 
In terms of sample spaces: 
 

A = { hht, hth, thh },  P(A)5 = 3/8,  P(B / A) = 2/3    P(B / A) P(A) = 2/8 

B = { hhh, hht, hth, htt },  P(B) = 4/8,  P(A / B) = 2/4    P(A / B) P(B) = 2/8 

A  B = { hht, hth },  P(A  B) = 2/8 

                                                 
4 hxx restricts the sample space to four events: S(hxx) = { hhh, hht, hth, htt }.  Since thh is not in that sample space 

there are only two possibilities: hht or hth. 
5 Note that P(A) really means P(A / S) for any set of events A in the Sample Space S. 
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Independent Events 
We say that two events are independent if their joint probability is equal to the product 
of their individual probabilities.  The probability of flipping two heads in a row is just: 
 

 P(h) = 0.5   P(hh) = P(h) * P(h) = 0.25  

 
Here, the notation, P(hh), is a shorthand for P(head on first toss, Head on second toss). 
 
Occurrences of a head the first time in no way influence the probability of a head the 
second time we flip a coin, as is obvious from looking at the sample space.  Any of 
these four events are equally likely, provided that the coin is unbiased. 
 
 Sample Space = { hh, ht, th, tt } 
 
A gambler may believe that a long string of bad luck makes the next wager more likely 
to be profitable and wagers most of his bankroll.  Not true, and so many gamblers are 
often broke. 
 
We can generalize these ideas to sample spaces:   
 
 S = { hhh, hht, hth, htt, thh, tht, tth, ttt } 
 

 A = { hxx } = { hhh, hht, hth, htt }   P(A)6 = 1/2 

 

 B = { xxt } = { hht, htt, tht, ttt }   P(B) = 1/2 

 

 P(A  B) = P(hxx  xxt) = P(hxt) = P(hxx)*P(xxt) = P(A) * P(B) = 1/4 

 
 
 
Law of Independent Events: 
 
    Events: 

 a and b are independent events    P(a and b) = P(a) * P(b) 

 
    Sample Spaces: 

P(A / B) = P(A)    P(A  B) = P(A) * P(B) 

 
 
 

                                                 
6 We interpret P(A) to mean P(A / S). 
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Mutually Exclusive Events 
 
If two events are mutually exclusive the probability of occurrence of either one or the 
other is the sum of the probabilities of each.  If a set of events covers the sample 
space, then the probability that one of them occurs has to be unity. 
 
For a coin flipping experiment consisting of three flips: 
 
 S = { hhh, hht, hth, htt, thh, tht, tth, ttt } 
 
The probability that only one tail occurs in the three flips is: 
 
 P(hht or hth or thh) = P(hht) + P(hth) + P(thh) = 3/8 
 
 
 
Law of Mutually Exclusive Events: 
 
    Events: 

 a and b are mutually exclusive events    P(a or b) = P(a) + P(b) 

 
    Sample Spaces: 

A  B =     P(A  B) = P(A) + P(B) 
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Baye’s Theorem 
 
Given a sample space, S of events e, and a subset A: 
 

e  A    e  S and e  A,  A  S 

 
e.g.: 

 A   A = S 

 
 
 
Then Bayes theorem states that: 
 

 P(A) = P(A / B) P(B) + P(A / B) P(B) 

 
 
 
 
 
This is illustrated in the Venn diagram on the next page. 
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Conditional Probabilities
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Example:

  Universe is set of outcomes for all sequences of 4 coin tosses

  B is set of outcomes with 2 heads

  A is set of outcomes with 1st and 2nd outcomes are heads

 


