
Multi-Threaded Systems

with Queues

Jim Fawcett

CSE681 – Software Modeling & Analysis

Fall 2003

2

FIFO Queues

 First In First Out queues are usually constructed with

linked lists.

 Objects enter the queue by getting linked to one end.

 Objects leave the queue by getting unlinked from the other

end.

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

3

Important Property of Queues

 Queues decouple a receiver from its sender.

 Sender and receiver can be on different threads of a given

process.

 Receiver does not need to process an object when it is handed

off by the sender.

 Queues can eliminate timing mismatches between sender and

receiver.

 One might be synchronized in nature, requiring message passing at

fixed time intervals – a radar signal processor for example.

 The other might be free-running, handling messages with different

service times, preventing synchronized operation.

 Queues can support reliable communication over unreliable

media, simply holding onto messages it can’t send until the

transmission link becomes available.

4

Message Passing Between Threads

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

5

Removing Timing Mismatches

 Radar Signal Processor reports detections at fixed times, but often

has no detection to report, so its output is bursty.

uniform receiverbursty sender

Bursty System

6

Reliable Communication

Process #1 - Main Thread

Socket Thread

socket

Process #2 - Main Thread

Socket Thread

socket
Interprocess

Communication

Store and Forward Architecture

SendQ RecvQ

SendQ is used to hold messages
in the event that communication
with the remote receiver fails.

Messages are held until
communication is re-established.

RecvQ is used to quickly remove
messages from the socket
connection so that the socket
buffer never fills (that would block
the sender).

7

Message Passing with Queues via Remoting

Client Server

remote-able objectClient-Side
Message
Handler

RecvQ

SendQ

Server-Side
Processing

of
Client Messages

Client-Side
Processing

of
Server Responses

child thread

child thread

Client-Side
Preparation

of
Request Messages Request Msg - call parameter

Response Msg - return value

main thread

main thread

Communication

thread is child thread

Sending and receiving

thread is main thread

8

Send and Receive Queues

 Essentially, a SendQ lets:

 Sender thread create a list of requests.

 Communication thread remember requests it has not processed

yet.

 A RecvQ lets:

 Remote process return a result independently of the receiver’s

main thread’s readiness to accept it.

 Valuable remote resource need not block waiting for a hand-off to

receiver.

 Both queues allow the client’s main thread to service

other important tasks as well as interact with the remote

resource.

9

Windows, Queues, and Messages

 Graphical User Interfaces are the stereotype of message-passing
systems using queues.

Active Window

keyboard

mouse

other

devices

Window Manager

event

handler

function

Raw Input Queue
Main thread in window process

blocks on call to GetMessage

until a message arrives. Then it

is dispatched to an event

handler associated with that

message.

Messages, filtered for this window, are

posted to the window’s message

queue by an operating system thread.

10

Windows Messaging

 With the architecture shown on the previous slide a

window can respond to any of many different inputs,

including:

 User inputs from mouse movement, mouse buttons, and

keyboard

 System events, e.g., being uncovered by an obscuring window,

and so needing to repaint its region of the screen

 Message generated from within the program running in that

process, based on strategies put in place by the designer.

 Even if several messages arrive before a predecessor is

processed, they won’t be lost.

11

Component Server Example

 The Component Server of projects #3 and #4, Fall 02,

serves sets of files, organized as components.

 A component may be:

 A single low-level module that links only to files

 An upper-level module that links to several lower level modules

as well as files

 perhaps test driver and documentation files

 A program that links to several modules and files

 A system that links to several programs and files

12

Component Representation

mod1.3.mod

mod2.1.mod

mod3.2.mod

file1.2.cs

file2.1.cs

file3.3.doc

file4.1.cs

file5.1.cs

file6.2.cs

file7.1.doc

program1.2.prg

program2.1.prg

system1.3.sys

Manifest files contain:
- a brief summary
- a list of keywords
- a list of references to
 lower level components.

13

Component Server Activities

 Show available components
 Systems or programs or modules

 Make a new component
 Specify type

 Show available server-side links

 If system, then programs and non source files

 If program then modules and non source files

 If module then modules and files

 Specify server-side link

 Extract a component to client
 Store at specified client path

 Insert a new file in server

14

Show Available Components

 Either:

 Ask server to send all its manifests of the specified type

 Send a command, get back a set of files

 Or:

 Send a list of manifests available on client

 Send a command with a list of names (includes version)

 ask server to send back any manifest client does not have

(or later version)

 Get back a set of files

15

Make a New Component

 Supply server with name and type
 Send command with name and type attributes

 Ask server for list of possible targets
 Send command with type attribute

 If module:
 Get back list of most recent version of all modules

 Get back list of most recent version of all files

 If program:
 Get back list of most recent version of all modules

 Get back list of most recent version of all non-source files

 If system:
 Get back list of most recent version of all programs

 Get back list of most recent version of all non-source files

 Specify links
 Send server command with component name and names of links

16

Extract a Component

 Specify target path

 Tell client file handler where to put files

 Supply server with name

 Example:

<extract myProg.2.prg>

 Get back set of files

17

Issues with Component Server

 Many of these operations may take a significant amount

of time.

 Client may have other important things to do:

 Probably has a user interface to support:

 Needs to service message queue at regular intervals.

 May want to spawn compiles on received files

 Support user browsing of manifest links and file text

 Therefore, we will want to make server requests on a

worker thread.

 This allows client activities to progress concurrently with

communication to the server.

18

More Issues

 Since operations are initiated by a user through GUI they

arrive asynchronously.

 Furthermore, requests may be bunched or may be made

widely separated in time.

 User actions may attempt to initiate new operations

before previous requests have been completed.

 One effective way to handle this situation is to use

queues, as shown in the next slide.

19

Message Passing with Queues

Client Server

remote-able objectClient-Side
Message
Handler

RecvQ

SendQ

Server-Side
Processing

of
Client Messages

Client-Side
Processing

of
Server Responses

child thread

child thread

Client-Side
Preparation

of
Request Messages Request Msg - call parameter

Response Msg - return value

main thread

main thread

Communication

thread is child thread

Sending and receiving

thread is main thread

20

Issues with Message Passing

 The main question with this approach is:

 how does the receiving thread know when to check its RecvQ?

 If the only thing the receiving thread does is process its messages –

like windows – it doesn’t need to know.

 It simply blocks on the queue until something becomes available.

 However, for systems like the Component Server, that have several

things to do, there are better solutions:

1. The receiver’s main thread can poll the RecvQ periodically and then go

about its other business.

2. The receiver’s communication thread can notify its main thread when

there is something to service in the queue.

We will look at all these solutions in the next few slides.

21

Blocking Call

 Suppose that the only thing receiver does is process

messages from RecvQ.

 Main thread can sleep for a some Milliseconds then

check the queue. This wastes CPU cycles if the queue

is often empty.

 How does a receiver block until queue has a message?

 Sending thread and receiving thread share an event.

 If queue is empty when receiver checks, it sets the event and

waits on the event handle.

 When the sender posts a message it fires the event, waking the

receiver to process the message.

22

Blocking Call (continued)

Parent Thread

Child ThreadSending Message to Child

Receiving Message from

Parent

Shared Queue

shared

event

Receiver sets

event then waits

on its handle

Sender enqueues

item then resets

event

23

Blocking Dequeue

 Example code in

/handouts/CSE681/code/BlockingQueueVS2003.

 Note caveat concerning single writer/single reader.

24

Polling RecvQ
 If the receiving thread is a UI thread it can:

 Create a timer, set to tick at the polling time interval.

 Define a message handler that checks the queue and removes

available entries.

 This works as follows:

 When the timer is started it sends a timer message to the windows

message queue of the UI thread.

 It sends the message again, every time the timer ticks.

 We simply associate the timer with its event hander, OnTick, through

the system defined EventHandler:

timer.Tick += new EventHandler(OnTick);

 When the UI thread is not handling timer Tick events it can handle

any other UI events that occur.

25

Polling Dequeue

 Example code would be useful here.

 None provided yet.

26

Notifications

 If the receiving thread is a UI thread it can:

 Define an event handler to dequeue messages from the RecvQ.

 The communication thread defines a delegate and points

to the event handler.

 When communication thread returns from remote call it:

 Enqueues the reply message

 Calls Form.beginInvoke(delegateName, object[] { args…}) on the

delegate.

 This marshals call to the UI thread causing the reply message to

be processed on the main thread.

27

Notifications Dequeue

 Example code would be useful here.

 None completed yet.

28

Non UI Receiver

 If the receiver thread is not a UI thread it is very likely

that the only thing it does is process messages from the

queue.

 In this case, a blocking call is exactly what is needed.

 If we have the rare situation where this is not the case,

all is not lost. We can create a hidden window to

process:

 Notifications from the communication thread

 Notifications from other theads needed to do the rest of the

receiver’s business.

 Since the window is hidden it won’t have any user actions to

process.

29

Client with Three Threads

 One design that I have used and liked uses three

threads:

 The main thread handles user events like mouse actions and key

presses and enqueues requests for the server.

 A communication thread takes care of interacting with the server

as shown previously.

 A receive thread is responsible for dequeuing messages posted

by the communication thread and populating various controls in

the UI, using BeginInvoke to marshal calls to the main thread.

 This design makes the receive thread block on an empty

RecvQ.

 The protocol is simple.

30

File Serving

 Many of the messages sent to the component server ask

it to send back some collection of files – those belonging

to some component.

 As the files reach the client, the communications thread

will want to save them in some specified path, then post

the names in the RecvQ. This way the UI can display

the names as they are received, allowing the client user

to access them only when they have fully arrived.

 Perhaps a click on a filename in a listBox will display the file text

in a window.

 We don’t want the name to appear in the listBox until the file has

arrived.

31

Message Passing with Queues

Client Server

remote-able objectClient-Side
Message
Handler

RecvQ

SendQ

Server-Side
Processing

of
Client Messages

Client-Side
Processing

of
Server Responses

child thread

child thread

Client-Side
Preparation

of
Request Messages Request Msg - call parameter

Response Msg - return value

main thread

main thread

Client creates

request for a

component.

Child thread saves files and

posts names as they arrive.

32

File Serving Issue
 There is another interesting file serving issue:

 Small text files can be returned as a single string.

 Bigger files and all binary files will need to be return as blocks, with

each block consisting of an array of bytes – remoting handles that

almost as easily as passing strings.

 However, if we use a singlecall object, we can only get a single block

back before the object will be destroyed, and the file pointer will be

discarded with it.

 There are three fairly straight-forward solutions to this problem:

1. Use a singleton object and provide synchronization for concurrent

clients – this is fairly straight-forward and won’t be discussed further.

2. Pass a file saver object by reference to the remote object.

3. Create a client activated remote object.

33

Types of Remoting Servers
 Server Activated

 SingleCall
 Object is created by server when a call arrives.

 Object is destroyed as soon as the call completes.

 Each client gets a unique instance.

 Established by RegisterWellKnowServiceType with parameter
WellKnownObjectMode.SingleCall.

 Singleton
 Object is created by server when first call arrives.

 Object is destroyed when its lease expires.

 Each client gets reference to singleton.

 Established by RegisterWellKnowServiceType with parameter
WellKnownObjectMode.Singleton.

 Client Activated
 Actually still activated by server when client calls new. Unlike Server

Activated constructor may have parameters.

 Object is destroyed when its lease expires.

 Each client gets a unique instance.

 Established by RegisterActivatedServiceType instead of
RegisterWellKnowServiceType call.

34

Passing Arguments by Reference

 File saver object:

1. Pass a file saver object by reference as a parameter to remote

call.

2. Server calls a member function to accept a block, then calls

another function asking object to save the block.

3. Server repeats this process until entire file has been sent, then

returns.

 Since file saver object is passed by reference, when the

server calls its member functions the data is marshaled

back to the client side where the real object resides.

35

Passing File Saver Object by Reference

 You will find a Pass-By-Reference example in the folder

PassByRef.

 It does not, of course, implement a file saver object.

That is up to you.

 Note: As of VS2003 pass-by-reference objects throw

security exceptions when server makes calls back to

client using the reference. I expect this can be

addressed by managing security settings, e.g., make the

server a trusted source and set the trusted zone

permissions accordingly. I have not had time to check

that out yet.

36

Client Activated Object

 Client activated objects continue to exist after a client’s

call.

 The remote object’s lifetime is determined by a lease timeout,

and can be programmatically set.

 Thus, as long as the timeout has not expired, the client may keep

calling the object until all blocks have been sent.

 The server can notify the client’s communication thread simply by

returning a boolean value. True means there is more to send.

37

Thoughts about Project #4 Interface

 Project #4’s tasks are:

 Extract and View components held by a remote resource.

 Please make sure that this also works with localhost since I will test

most of the projects that way.

 Create a new component

 Insert new files into the component server

 These will be used to make some of the new components and add to

others.

 Because of time limitations you will want to make the

user interface simple.

 It still must be effective for the tasks listed above.

End of Presentation

