Jim Fawcett
CSE681 — Software Modeling and Analysis
Fall 2006

References

o C++/CLI

— A Design Rationale for C++/CLI, Herb Sutter,
http://www.gotw.ca/publications/C++CLIRationale.pdf

— Moving C++ Applications to the Common Language Runtime, Kate
Gregory,
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a
/dfd6ea3-138a-404e-b3e9-55534ba84f22

— C++/CLI FAQ,
http://www.winterdom.com/cppclifag/

— C++: Most Powerful Language for .NET Framework Programming, Kenny
Kerr,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvs05/html/VS05Cplus.asp?frame=true

http://www.gotw.ca/publications/C++CLIRationale.pdf
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a7dfd6ea3-138a-404e-b3e9-55534ba84f22
http://www.winterdom.com/cppclifaq/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/VS05Cplus.asp?frame=true

Managed C++ Syntax

Include system dlls from the GAC:

— #include < System.Data.dll>

— #include <mscorlib.dll> - not needed with C++/CLI
Include standard library modules in the usual way:

— #include <iostream>

Use scope resolution operator to define namespaces

— using namespace System::Text;

Declare .Net value types on stack

Declare .Net reference types as pointers to managed heap
— String” str = gcnew String("Hello World™);

Managed Classes

Syntax:

classN{ ... }; native C++ class
refclassR{ ... }; CLR reference type
valueclassV{ ... }; CLR value type
interface class I1{ ... }; CLR interface type
enumclassE{ ... }; CLR enumeration type

N is a standard C++ class. None of the rules have changed.

R is @ managed class of reference type. It lives on the managed heap and is referenced by a handle:
e R~ rh =gcnew R;
e delete rh; [optional: calls destructor which calls Dispose() to release unmanaged resources]

e Reference types may also be declared as local variables. They still live on the managed heap, but their
destructors are called when the thread of execution leaves the local scope.

V is @ managed class of value type. It lives in its scope of declaration.

e Value types must be bit-wise copyable. They have no constructors, destructors, or virtual functions.

e Value types may be boxed to become objects on the managed heap.
I is a managed interface. You do not declare its methods virtual. You qualify an implementing
class’s methods with override (or new if you want to hide the interface’s method).

E is @ managed enumeration.

N can hold “values”, handles, and references to managed types.

N can hold values, handles, and references to value types.

N can call methods of managed types.

R can call global functions and members of unmanaged classes without marshaling.

R can hold a pointer to an unmanaged object, but is responsible for creating it on the C++
heap and eventually destroying it.

From Kate Gregory’s Presentation
see references

Native Managed

Pointer / Handle L ~
Reference & %

Allocate new gcnew

Free delete deletel?
Use Native Heap v Ve
Use Managed Heap x v
Use Stack v v

Verifiability * and & never A and % always

1 Optional 2 Value types only

Mixing Pointers and Arrays

Managed classes hold handles to reference types:
— ref class R 2{ ... private: String” rStr; };

Managed classes can also hold pointers to native types:
— ref class R1 { ... private: std::string* pStr; };

Unmanaged classes can hold managed handles to managed types:
— class N { ... private: gcroot<String”> rStr; };

Using these handles and references they can make calls on each other’s
methods.

Managed arrays are declared like this:
— Array<String”™>” ssarr = gcnew array<String”™>(5);
— ssarr[i] = String::Concat("Number”, i.ToString()); 0O<=i<=4

Managed arrays of value types are declared like this:
— array<int>~ strarray = gcnew array<int>(5);
— Siarr[i] =i; 0<=i<=4;

Type Conversions

C++ Type CTS Signed Type CTS Unsigned Type
char Sbyte Byte
short int Intl6 UInti6
int, _ int32 Int32 UInt32
long int Int32 UInt32
__int64 Int64 UInt64
float Single N/A
double Double N/A
long double Double N/A
bool Boolean N/A

Extensions to Standard C++

Managed classes may have the qualifiers:
— abstract
— sealed

A managed class may have a constructor qualified as static, used to
initialize static data members.

Managed classes may have properties:
— property int Length

int get() { return _len; }
void set(int value) { _len = value; }

¥
— property int Length; // short hand for the declaration above

A managed class may declare a delegate:
— delegate void someFunc(int anArg);

Managed Exceptions

A C++ exception that has a managed type is a managed
exception.

Application defined exceptions are expected to derive from
System::Exception.

Managed exceptions may use a finally clause:
— try { ... } catch(myExcept &me) { ... } finally { ... }

The finally clause always executes, whether the catch handler
was invoked or not.

Only reference types, including boxed value types, can be
thrown.

An unmanaged C++
program can be
compiled to generate
managed code using
the /clr option.

You can mix managed
and unmanaged code
using

#pragma managed
and

#pragma unmanged.
Metadata will be
generated for both.

Code Targets

MixedClasses_again Property Pages

Configuration: |Active(Debug]

Common Properties
= Configuration Properties

General

Debugging

C/C++

Linker

Manifest Tool

XML Document Generatc
Browse Information
Build Events

Custom Build Step

Web Deployment

b

v| Flatform: |Active(Win32]

V| [Configuration Manager...]

B General
Qutput Directory
Intermediate Directory
Extensions to Delete on Clean
Build Log File

Inherited Project Property Sheets

B Project Defaults
Configuration Type
Use of MFC
Use of ATL
Minimize CRT Use in ATL
Character Set

%(SolutionDir)$({ConfigurationMame)
$(ConfigurationName)

.obj;.ilk; ® tlb; =.tli; *.thh; *.tmp;*.rsp;*.pgc; *.pgd;

$(IntDir)\BuildLog.htm

Application {.exe)

Use Standard Windows Libraries
Mot Using ATL

Mo

Use Unicode Character Set

oy [T W T T T T RN Common Language Runtime Support (/clr)

Whole Program Optimization

C L ge Runtime

Mo Whole Program Optimization

rt

1 b

Specifies whether this configuration supports the Common Language Runtime. This is

incompatible with some other settings, e.g. runtime checks. See help for /clr family of C...

h

OK H Cancel H Apply

Mixing Managed and Unmanaged Code

« You may freely mix unmanaged and managed classes in the
same compilation unit.
— Managed classes may hold pointers to unmanaged objects.

— Unmanaged classes may hold handles to managed objects wrapped
in gcroot:
e #include <vcclr.h>
e Declare: gcroot<System::String”> pStr;
— That helps the garbage collector track the pStr pointer.

— Calls between the managed and unmanaged domains are more
expensive than within either domain.

. Note, all of the above means, that you can use .Net Framework
Class Libraries with unmanaged code, and you can use the C++
Standard Library (not the STL yet) with managed code.

Features Supported (ECMA Std)

¢ http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf - Windows Internet Explorer
@; - |§, http:/fwawwr.ecma-international.org/publications/files/ECMA-ST/ECMA-372.pdf V| 4| [|C++jCLI

. File Edit GoTo Favorites Help

W & [@http:,fjwww.ecmaf\nternat\ona\.orgfpublicati... I_I - B f= - | Page ¥ {F Tools » =

Bl seveecory =g @ @ searer In soect i |1 @ - 1] |p] © [38% |- @ [[03- 8 v - = P v PP A

»
~

4y
St

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are
available to all classes. The class-related features that are supported by native classes (§20), ref classes
(§21), value classes (§22). and interfaces (§25), are specified in the clauses that define those types. [Nore: A
summary of that support is shown in the following table:

Feature Native class Ref class Value class Interface

Assignment operator
Class modifier
Copy constructor
Default constructor

: Pages 'k Layers\l{ Bookmarks

X

Delegate definitions

P A A | A A

Destructor
Events

v
<lislis

g Finalizer

n/a

i

Function modifiers
Initonly field

Literal field

Member of delegate type
Override specifier X

s

Parameter arrays X

Properties
Reserved member names

Static constructor

I A e A e e e A e A e A R A R e e A e A e

AP P PP
AP P8

Comments \l\ Attachments

Static operators X

end notel

= 4 4 | 112 of 304 | Bl [«] > L |E| oo L

Done & Unknown Zone

Limitations of Managed Classes

Generics and Templates are now supported, but STL/CLI has
not shipped yet.

Only single inheritance of implementation is allowed.

Managed classes can not inherit from unmanaged classes and
vice versa. This is may be a future addition.

No copy constructors or assignment operators are allowed for
value types.

Member functions may not have default arguments.
Native types can grant friendship. Managed types cannot.

Const and volatile qualifiers on member functions are currently
not allowed.

Platform Invocation - PInvoke

« Call Win32 API functions like this:

— [DllImport(“kernel32.dll")]
extern “C"” bool Beep(Int32,Int32);

— Where documented signature is:
BOOL Beep(DWORD,DWORD)

« Can call member functions of an exported class
— See Marshaling.cpp, MarshalingLib.h

Additions to Managed C++ in VS 2005

Generics
— Syntactically like templates but bind at run time
— No specializations
— Uses constraints to support calling functions on parameter type

Iterators
— Support for each construct
Anonymous Methods
— Essentially an inline delegate
Partial Types, new to C#, were always a part of C++
— Class declarations can be separate from implementation
— Now, can parse declaration into parts, packaged in separate files

Using Frameworks in MFC

from Kate Gregory’s Presentation

Visual C++ 2005 allows you to use new Frameworks libraries in
MFC Applications

MFC includes many integration points
— MFC views can host Windows Forms controls
— Use your own Windows Forms dialog boxes
— MFC lets you use Windows Forms as CView
— Data exchange and eventing translation handled by MFC
— MFC handles command routing

MFC applications will be able to take advantage of current and
future libraries directly with ease

