
C++/CLI

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2006

References

 C++/CLI
– A Design Rationale for C++/CLI, Herb Sutter,

http://www.gotw.ca/publications/C++CLIRationale.pdf

– Moving C++ Applications to the Common Language Runtime, Kate
Gregory,
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a
7dfd6ea3-138a-404e-b3e9-55534ba84f22

– C++/CLI FAQ,
http://www.winterdom.com/cppclifaq/

– C++: Most Powerful Language for .NET Framework Programming, Kenny
Kerr,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvs05/html/VS05Cplus.asp?frame=true

http://www.gotw.ca/publications/C++CLIRationale.pdf
http://www.gregcons.com/KateBlog/CategoryView.aspx?category=C++#a7dfd6ea3-138a-404e-b3e9-55534ba84f22
http://www.winterdom.com/cppclifaq/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/VS05Cplus.asp?frame=true

Managed C++ Syntax

 Include system dlls from the GAC:

– #include < System.Data.dll>

– #include <mscorlib.dll> - not needed with C++/CLI

 Include standard library modules in the usual way:

– #include <iostream>

 Use scope resolution operator to define namespaces

– using namespace System::Text;

 Declare .Net value types on stack

 Declare .Net reference types as pointers to managed heap

– String^ str = gcnew String(”Hello World”);

Managed Classes

 Syntax:

class N { … }; native C++ class
ref class R { … }; CLR reference type
value class V { … }; CLR value type
interface class I { … }; CLR interface type
enum class E { … }; CLR enumeration type

– N is a standard C++ class. None of the rules have changed.
– R is a managed class of reference type. It lives on the managed heap and is referenced by a handle:

• R^ rh = gcnew R;
• delete rh; [optional: calls destructor which calls Dispose() to release unmanaged resources]
• Reference types may also be declared as local variables. They still live on the managed heap, but their

destructors are called when the thread of execution leaves the local scope.

– V is a managed class of value type. It lives in its scope of declaration.
• Value types must be bit-wise copyable. They have no constructors, destructors, or virtual functions.
• Value types may be boxed to become objects on the managed heap.

– I is a managed interface. You do not declare its methods virtual. You qualify an implementing
class’s methods with override (or new if you want to hide the interface’s method).

– E is a managed enumeration.

 N can hold “values”, handles, and references to managed types.
 N can hold values, handles, and references to value types.
 N can call methods of managed types.
 R can call global functions and members of unmanaged classes without marshaling.
 R can hold a pointer to an unmanaged object, but is responsible for creating it on the C++

heap and eventually destroying it.

From Kate Gregory’s Presentation
see references

Native Managed

Pointer / Handle * ^

Reference & %

Allocate new gcnew

Free delete delete1

Use Native Heap  
2

Use Managed Heap  

Use Stack  

Verifiability * and & never ^ and % always

1 Optional 2 Value types only

Mixing Pointers and Arrays

 Managed classes hold handles to reference types:
– ref class R 2{ … private: String^ rStr; };

 Managed classes can also hold pointers to native types:
– ref class R1 { … private: std::string* pStr; };

 Unmanaged classes can hold managed handles to managed types:
– class N { … private: gcroot<String^> rStr; };

 Using these handles and references they can make calls on each other’s
methods.

 Managed arrays are declared like this:
– Array<String^>^ ssarr = gcnew array<String^>(5);

– ssarr[i] = String::Concat(“Number”, i.ToString()); 0<= i <= 4

 Managed arrays of value types are declared like this:
– array<int>^ strarray = gcnew array<int>(5);

– Siarr[i] = i; 0<=i<=4;

Type Conversions

C++ Type CTS Signed Type CTS Unsigned Type

char Sbyte Byte

short int Int16 UInt16

int, __int32 Int32 UInt32

long int Int32 UInt32

__int64 Int64 UInt64

float Single N/A

double Double N/A

long double Double N/A

bool Boolean N/A

Extensions to Standard C++

 Managed classes may have the qualifiers:
– abstract

– sealed

 A managed class may have a constructor qualified as static, used to
initialize static data members.

 Managed classes may have properties:
– property int Length

{
int get() { return _len; }
void set(int value) { _len = value; }

}

– property int Length; // short hand for the declaration above

 A managed class may declare a delegate:
– delegate void someFunc(int anArg);

Managed Exceptions

 A C++ exception that has a managed type is a managed
exception.

 Application defined exceptions are expected to derive from
System::Exception.

 Managed exceptions may use a finally clause:
– try { … } catch(myExcept &me) { … } finally { … }

 The finally clause always executes, whether the catch handler
was invoked or not.

 Only reference types, including boxed value types, can be
thrown.

Code Targets

 An unmanaged C++
program can be
compiled to generate
managed code using
the /clr option.

 You can mix managed
and unmanaged code
using
#pragma managed
and
#pragma unmanged.
Metadata will be
generated for both.

Mixing Managed and Unmanaged Code

 You may freely mix unmanaged and managed classes in the
same compilation unit.

– Managed classes may hold pointers to unmanaged objects.

– Unmanaged classes may hold handles to managed objects wrapped
in gcroot:

• #include <vcclr.h>

• Declare: gcroot<System::String^> pStr;

– That helps the garbage collector track the pStr pointer.

– Calls between the managed and unmanaged domains are more
expensive than within either domain.

 Note, all of the above means, that you can use .Net Framework
Class Libraries with unmanaged code, and you can use the C++
Standard Library (not the STL yet) with managed code.

Features Supported (ECMA Std)

Limitations of Managed Classes

 Generics and Templates are now supported, but STL/CLI has
not shipped yet.

 Only single inheritance of implementation is allowed.

 Managed classes can not inherit from unmanaged classes and
vice versa. This is may be a future addition.

 No copy constructors or assignment operators are allowed for
value types.

 Member functions may not have default arguments.

 Native types can grant friendship. Managed types cannot.

 Const and volatile qualifiers on member functions are currently
not allowed.

Platform Invocation - PInvoke

 Call Win32 API functions like this:

– [DllImport(“kernel32.dll”)]
extern “C” bool Beep(Int32,Int32);

– Where documented signature is:
BOOL Beep(DWORD,DWORD)

 Can call member functions of an exported class

– See Marshaling.cpp, MarshalingLib.h

Additions to Managed C++ in VS 2005

 Generics

– Syntactically like templates but bind at run time

– No specializations

– Uses constraints to support calling functions on parameter type

 Iterators

– Support for each construct

 Anonymous Methods

– Essentially an inline delegate

 Partial Types, new to C#, were always a part of C++

– Class declarations can be separate from implementation

– Now, can parse declaration into parts, packaged in separate files

Using Frameworks in MFC
from Kate Gregory’s Presentation

 Visual C++ 2005 allows you to use new Frameworks libraries in
MFC Applications

 MFC includes many integration points

– MFC views can host Windows Forms controls

– Use your own Windows Forms dialog boxes

– MFC lets you use Windows Forms as CView

– Data exchange and eventing translation handled by MFC

– MFC handles command routing

 MFC applications will be able to take advantage of current and
future libraries directly with ease

End of Presentation

