NET Deployment

Matt Smouse
CSE775 — Distributed Objects
Spring 2003



Outline

Deployment issues

Configuration files

Soapsuds and implementation hiding
Server Deployment with Windows Services
Server Deployment with IS

Client Deployment with IS



Deployment Issues

Change in server location

o Does the client hard-code the location and port of remote objects
on the server?

Uses of the application

o WIll this application be used in other ways? For instance, LAN vs
Internet use.

New/additional remotable objects

o Will we be adding remotable objects after we have built the
application?

Web deployment

Implementation hiding
o Do we want to allow the client to disassemble our code?



Configuration Files

Rather than hard-code the registration of remote
objects and their channels, we can use a
configuration file.

Using a configuration file allows us to do the
following without recompiling the server or client:
o Change the type of channel that is used

o Add additional remotable objects

o Change the lifetime settings of remotable objects

o Add message sinks or formatters to the server or client

This functionality is available through the
System.Runtime.Remoting assembly.



Configuration Files (cont)

A configuration file is an XML document that is
loaded by the server or client.

Use two different configuration files for the client and
the server.

On the server, load the configuration file using
RemotingConfiguration.Configure(“MyServer.exe.config”);

On the client, load the configuration file using
RemotingConfiguration.Configure(“MyClient.exe.config”);
After loading the configuration file on the client,
simply call new on the remotable object class to
create a proxy.



Configuration Files (cont)

Content and structure
<configuration>
<system.runtime.remoting>
<application>
<lifetime />
<channels />
<service />
<client />
</application>
</system.runtime.remoting>
</configuration>



Configuration Files (cont)

Lifetime

o The <lifetime> tag allows you to change the lifetime of your
remotable objects.
o Valid attributes:

leaseTime — This is the initial lease time that an object will
have to live before it is destroyed.

sponsorshipTimeout — The time to wait for a sponsor’s reply.

renewOnCallTime — This is the additional lease time that is
added with each call on the remote object.

leaseManagerPollTime — Specifies when the object’s current
lease time will be checked.

o Note that these apply to Singleton and Client-Activated
objects only.



Configuration Files (cont)

Channels

o The <channels> element contains the channels that your
application will be using. We declare channels with the
<channel> tag.

o The <channel> tag specifies the type, port, and other properties
for a particular channel.

o Valid attributes:

ref — “http” or “tcp”
displayName — Used for .NET Framework Configuration Tool

type — if ref is not specified, contains namespace, classname, and
assembly of the channel implementation.

port — server side port number. Use 0 on the client if you want to get
callbacks from the server.

name — Unique names to specify multiple channels (use )
priority — Sets priority of using one channel over another.



Configuration Files (cont)

Channels

o Valid attributes (cont):
clientConnectionLimit — Number of simultaneous connections
to a particular server (default = 2)
proxyName — name of the proxy server
proxyPort — port of the proxy server

suppressChannelData — specifies whether a channel will add to the
ChannelData that is sent when an object reference is created

uselpAddress — specifies whether the channel should use IP
addresses in URLs rather than hostname of the server

listen — setting for activation hooks into listener service

bindTo — used with computers that have multiple IP addresses
machineName — overrides uselpAddress

rejectRemoteRequests (tcp only) — sets local communication only



Configuration Files (cont)

o Providers

Sink and formatter providers allow the user to specify the
manner in which messages are generated and captured by
the framework for each channel.

Both the client and server may specify settings for

The tags <serverProviders></serverProviders> and
<clientProviders></clientProviders> contain the individual
settings for each provider or formatter that you wish to set.

You can specify one formatter and multiple provider settings.
You must place the settings in the order shown:



Configuration Files (cont)

o Example channel entry for a server:
<channels>
<channel ref="http” port=“1234">
<serverProviders>
<formatter ref="binary” />
<provider type="MySinks.Sample, Server” />
</serverProviders>
</channel>
</channels>



Configuration Files (cont)

o Providers (cont)
Available attributes for formatters and providers:

Q
Q

7 11

ref — “soap”, “binary”, or “wsdl”

type — if ref is not specified, contains namespace, classname, and
assembly of the sink provider implementation.

includeVersions (formatter only) — specifies whether version
information is included with object requests

strictBinding (formatter only) — specifies whether the server must
use an exact type and version for object requests



Configuration Files (cont)
Service

Q

The <service> tag is used in the server’s configuration file to
specify the remote objects that will be hosted.

Contains <wellknown /> and <activated /> entries for server-
activated objects (SAOs) and client-activated objects (CAOs),
respectively.

Valid attributes for <wellknown />

type — Specifies the namespace, classname, and assemblyname of
the remote object.

mode — Singleton or SingleCall

objectUri — Important for 1IS hosting (URIs must end in .rem or .soap,
as those extensions can be mapped into the IIS metabase.

displayName — Optional, used by .NET Framework configuration tool.
Valid attributes for <activated />

type — Specifies the namespace, classname, and assemblyname of
the remote object.



Configuration Files (cont)
Client

Q

The <client> tag is used in the client’s configuration file to specify
the types of remote objects that it will use.

Contains attribute for the full URL to the server if using CAOs.

Contains <wellknown /> and <activated /> entries for server-
activated objects (SAOs) and client-activated objects (CAOs),
respectively.
Valid attributes for <wellknown />

url — The full URL to the server’s registered object

type - Specifies the namespace, classname, and assemblyname of
the remote object.

displayName — Optional, used by .NET Framework configuration tool
Valid attributes for <activated />

type — Specifies the namespace, classname, and assemblyname of
the remote object.



Configuration Files (cont)

Usage notes:

o Errors in your configuration file cause the framework to
Instantiate a local copy of the remote object rather than a
proxy when you call new on it. Check the IsTransparentProxy
method to be sure you are using a remote object.

o When you specify assembly names in your <wellknown /> and
<activated />, don'’t include the extension (.dll or .exe).

2 You only have to specify the features that you want/need in
your configuration file.

o You don’t have to use the <channel /> setting on the client if
you use the default “http” or “tcp” channels on the server. You
must specify a port on the server.



Soapsuds and Implementation Hiding

The first thing that you may notice when using .NET
remoting Is that the remote object assemblies must
be present on the client.

We can get away with using interfaces to hide
Implementation if we stick with programmatic
remoting configuration.

o Create an assembly that contains interfaces which can be
Included on the client machine.

o Create another assembly which contains the remote object
Implementations of the interfaces you specified earlier.

o Call Activator.GetObject on the client when you want a
class that implements the interface you specify.



Soapsuds and Implementation Hiding (cont)

Example:

In the shared assembly:
public interface IExampleClass {...}

In the assembly on the server:
public class ExampleClass : MarshalByRefObject, IExampleClass {...}

On the client:

IExampleClass iec = (IExampleClass) Activator.GetObject(
typeof(IExampleClass),
“tcp://localhost:1234/ExampleClass’);



Soapsuds and Implementation Hiding (cont)

Soapsuds is a Visual Studio tool that allows you to
extract metadata from an assembly. The new
assembly contains no implementation detail, just
meta (type) information.

If our application contains only remote objects and
no customized [serializable] objects, then we can
just run soapsuds on the assembly containing our
remote objects and include the new assembly on
the client.

soapsuds -ia:MyRemoteObjects -nowp -oa:MyRemoteMeta.dll



Soapsuds and Implementation Hiding (cont)

If our application does include custom [serializable]
objects that are passed between domains, then we
can't just generate a new assembly. We have to use
generated source code that describes the remote
object metadata.

soapsuds -ia:MyRemoteObjects —nowp —gc

Note that this does not include objects that are
native to the framework, i.e. strings, Fileinfo,
Directorylnfo, etc. If our application only uses these

types of [serializable] objects, then generating a
“meta” assembly will work fine.



Soapsuds and Implementation Hiding (cont)

Project configuration:

Server

MySerializableObjects

Include these
libraries on
the server.

MyRemoteObijects

Include this
library on
the client.

Client

Run soapsuds

and add generated
source code to client
project.



Server Deployment with Windows Services

A .NET windows service inherits from
System.ServiceProcess.ServiceBase

Place your application specific code in the OnStart(..) method.

You have to provide an installer class along with your
windows service class.

Using a windows service allows you to do event logging

If your service does remoting, you have to place the
configuration file in c:\WINNT\system32

Install the service using installutil YourServiceName.exe

After you've installed the service, you can start it using the
Microsoft Management Console.



Server Deployment with 1IS

If you are concerned about security, then IS hosting
IS the best way to go.

Authentication and encryption features are available
through I1S.

Remote objects are now hosted in IIS; there is no
Main() in the server.

Updates to the server are easy: just copy over the
remote object assembly and web.config file. [1S will
automatically read the new data.



Server Deployment with 1IS

Procedure:

o o 0o 0 0o o0 o0 o o

Create a class library for your remotable objects

Build the assembly for the class library

Create a web.config file for the server

Create a virtual directory on the host machine

Set the desired authentication methods for the directory
Place the web.config file in the virtual directory

Create a /bin directory in the virtual directory

Place the remotable object assembly in the virtual directory
Create a client and configuration file



Client Deployment with IIS

By placing a WinForm application in a virtual directory, we can
stream it to clients.

When a URL is selected by a client machine, an HTTP
request is sent to the server, which streams the application
back to the client.

The application is then stored in the browser cache and also
the .NET download cache.

The runtime opens the application automatically and also
makes requests for additional assemblies and files as
necessary.

Be sure to put any remoting configuration files in the virtual
directory with the client application.



End of Presentation




