Comparison of C++ and C#

Jim Fawcett
Software Modeling
Copyright © 1999-2017

ENGINEERING@SYRACUSE

Both Are Important

- C++ has a huge installed base.

- C++ provides almost complete control over the allocation of
resources and execution behavior of programs.

- C# Is the dominant .Net language.

- C#, a managed language, is simpler than C++, takes over control
of memory resources and manages the execution of programs.

- CSE681—Software Modeling and Analysis
- Focuses almost exclusively on C# and .Net.

- CSE687—O0Dbject-Oriented Design:
- Focuses almost exclusively on C++ and the Standard Library.

ENGINEERING@ SYRACUSE

C# Language

- Looks a lot like Java

- A strong similarity between:
- Java Virtual Machine and .Net CLR
- Java bytecodes and .Net Intermediate Language
- Java packages and CRL components and assemblies
- Both have just-in-time (JIT) compilers
- Both support reflection, used to obtain class information at run time
- Both languages support generics (not as useful as C++ templates)

- Differences:

- Java and C# do have significant differences
- C# has most of the operators and keywords of C++
- C# code supports attributes—tagged metadata, Java uses annotations
- C# provides deep access to the Windows platform through FCL

- Java supports network programming and GUI development on many
platforms

ENGINEERING@ SYRACUSE

C# Hello World Program

using System;

namespace HelloWorld

{
class Chello
{
string Title(string s)
{
int len = s.Length;
string underline = new string('=',len+2);
string temp = "\n " + s + "\n" + underline;
return temp;
}
string SayHello()
{
return "Hello World!";
}
[STAThread]
static void Main(string[] args)
{
Chello ch = new Chello();
Console.Write(ch.Title("HelloWorld Demonstration”));
Console.Write("\n\n {0}\n\n",ch.SayHello());
}
}
}

ENGINEERING@SYRACUSE

Differences between C# and C++

- In C# there are no global functions. Everything is a class.
- Main(string args[]) is a static member function of a class.

- The C# class libraries are like Java Packages, not like the C and C++
Standard Libraries.
- System, System.Drawing, System.Runtime.Remoting, System.Text, System.Web
- C# class hierarchy is rooted in a single “Object” class

- C# does not separate class declaration and member function definitions.
- Every function definition is inline in the class declaration—Ilike the Java structure.
- There are no header files.

- Instead of #include, C# uses using statements:
- using System;
- using System.ComponentModel;

ENGINEERING@ SYRACUSE

Differences between C++ and C#

- The C# object model is very different from the C++ object
model.

- lllustrated on the next slide

- C# supports only single inheritance of implementation but
multiple inheritance of interfaces

- C# does not support use of pointers, only references,
except in “unsafe” code.

- Use of a C# variable before initialization is a compile-time
error.

ENGINEERING@ SYRACUSE

C# Object Model

Reference Type

value type

on stack handle on Stack

bool, byte, char,
decimal, double,
float, int, long, shyte,
short, struct, uint,
ulong, ushort

Body on Heap

Example:
intx =3;

object, string,
user defined type

Example:
myClass mc = new myClass(args);
string myStr = "this is some text";

ENGINEERING@SYRACUSE

Comparison of Object Models

- C++ Object Model - .Net Object Model
- All objects share a rich memory model: - More Spartan memory model:
- Static, stack, and heap - Value types are static and stack
- Rich object life-time model: based only.
- Static objects live for the duration of the - Reference types (all user-defined
program. types and library types) live on the
- Objects on stack live within a scope defined managed heap.
by { and }. - Nondeterministic lifetime model:
- Objects on heap live at the designer’s - All reference types are garbage
discretion. collected.
- Semantics based on a deep copy model. - That's the good news.
- That’s the good news. - That’s the bad news.
- That's the bad news. - Semantics based on a shallow

- For compilation, clients carry their server’s type reference_mc_)del. _ _
information via headers. - For compilation, clients use their

- That's definitely bad news. server’'s metadata.

- Butit has a work-around, e.g., design to - Thatis great news.

interface not implementation. Use object * Itis this property that makes .Net
factories. components so simple.

ENGINEERING@ SYRACUSE

C# Primitive Types

.Net Base Class C# Types
- System.Byte - byte
- System.SByte - Shyte
- System.Int16 - short
- System.Int32 - int
- System.Int64 - long
- System.UInt16 - ushort
- System.UInt32 - uint
- System.UInt64 - ulong
- System.Single - float
- System.Double - double
- System.Object - object
- System.Char - char
- System.String - string
- System.Decimal - decimal
- System.Boolean - bool

ENGINEERING@SYRACUSE

C# Object Type

- Object is the root class of the C# library

- Object’s members:
- Public Object();
- Public virtual Boolean Equals(Object obj);
- Returns true if obj and invoker handles point to the same body.
- Public virtual Int32 GetHashCode();
- Return value identifies object instance.
- Public Type GetType();
- Type object supports RTTI — see next page
- Public virtual String ToString();
- Returns namespace.name
- Protected virtual void Finalize();
- Called to free allocated resources before object is garbage collected.
- Protected Object MemberwiseClone();

- Performs shallow copy

- To have your class instances perform deep copies you need to implement the ICloneable
interface.

ENGINEERING@ SYRACUSE

Common Type System

- Reference types

- Classes
- Methods
- Fields
- Properties
- Events

- Member adornments:
public, protected, private, abstract, static

- Interfaces

- Class can inherit more than one

- Must implement each base interface
- Delegates

- Instances used for notifications
ENGINEERING@ SYRACUSE

Common Type System

- Value types

- Primitive types
- See page 13

- Structures
- Methods
- Fields
- Properties
- Events
- Member adornments:

public, protected, private, abstract, static

- Enumerations
ENGINEERING@SYRACUSE

Type Class

You get type object this way: Some of Type’s members:
- Type t = myObj.GetType(); - IsAbstract
- Type t = Type.GetType(“myObj”); - IsArray

- IsClass

- IsComObiject

« IsEnum

- IsInterface

- IsPrimitive

An instance of Type is a - IsSealed

container for reflection - IsValueType

information, and has many - InvokeMember()

methods to use that - GetType() returns Type Object

information. - FindMembers() returns MemberInfo array
- GetEvents() returns Eventlnfo array
- GetFields() :

- GetMethods()
- Getlnterfaces()
- GetMembers()
- GetProperties()

ENGINEERING@SYRACUSE

More Differences

- The CLR defines a new delegate type, used for callbacks.

- Event is a keyword in all CLR languages.

- Events modify the delegate interface, eliminating actions by a subscriber that might affect other
subscribers.

- All memory allocations are subject to garbage collection—you don’t call
delete.

- There are no #includes in C#. There are in both managed and unmanaged
C++,

- In C# all class data members are primitive types or C# references. In
managed C++ all class data members are either primitive value types, C++
references, or C++ pointers. Nothing else is allowed.

- The CLR provides directory services, and remoting. The Standard C++
Library provides neither of these, although they are relatively easy to provide
yourself.

ENGINEERING@ SYRACUSE

Delegates

- Delegates are used for callbacks:

In response to some event they invoke one or more functions supplied to them.

Library code that generates an event will define a delegate for application
developers to use—the developer defines application-specific processing that needs
to occur in response to an event generated by the library code.

A delegate defines one specific function signature to use:
public delegate rtnType delFun(args...);

This declares a new type, delFun whose instances can invoke functions with that
signature.

The developer supplies functions this way:

libClass.delFun myDel = new libClass.delFun(myFun);

This declares a new instance, myDel, of the delFun type.

ENGINEERING@ SYRACUSE

Events

Events are specialized delegates that are declared and invoked by a class that wants to publish notifications.

The event handlers are functions created by an event subscriber and given to the delegate.

Many C# events use the specialized delegate event handler of the form:

public delegate void evDelegate(
object sender, userEventArgs eArgs

);

userEventArgs is a subscriber-defined class, derived from System.EventArgs. You usually provide it with a constructor to allow
you to specify information for the event to use.

The event is then declared by the publisher as:

public event evDelegate evt;
Either publisher or subscriber has to create a delegate object, eveDel, and pass it to the other participant.

The event is invoked by the publisher this way:

evDel(
this, new userEventArgs(arg)

);
The subscriber adds an event handler function, myOnEvent, to the event delegate this way:

Publisher.evDelegate evDel +=
new Publisher.evDelegate(myOnEvent);

ENGINEERING@SYRACUSE

Threads

A C# thread is created with the statement:

Thread thrd = new Thread() ;

System.Threading declares a delegate, named ThreadStart, used to define
the thread'’s processing.

- ThreadStart accepts functions that take no arguments and have void return type.

You define a processing class, MyProc that uses constructor arguments or
member functions to supply whatever parameters the thread processing
needs.

To start the thread you simply do this:
MyProc myProc = new myProc(args, ..);
Thread thrd = new Thread();

ThreadStart thrdProc = new ThreadStart (myProc);
thrd.Start (thrdProc) ;

ENGINEERING@ SYRACUSE

Thread Synchronization

- The simplest way to provide mutually exclusive access to
an object shared between threads is to use lock:

lock (someObject) {
// do some processing on
// someObject

}

While a thread is processing the code inside the lock
statement no other thread is allowed to enter the lock.

ENGINEERING@ SYRACUSE

Assemblies

- An assembly is a versioned, self-describing binary (dll or
exe)

- An assembly is the unit of deployment in .Net

- An assembly is one or more files that contain:

- A manifest

- Documents each file in the assembly

- Establishes the assembly version

- Documents external assemblies referenced
- Type metadata

- Describes all the methods, properties, fields, and events in each module
in the assembly

- MSIL code

- Platform-independent intermediate code

- JIT transforms IL into platform-specific code
- Optional resources

- Bitmaps, string resources, ...

ENGINEERING@ SYRACUSE

Assembly Structure

- Visual Studio does most of the work in configuring an assembly

for you.
Single File Assembly Multiple File Assembly
myProject.exe mylibrary
libl.dll lib2.dll
. > . > Type
Manifest Manifest Metadata
Type Type
Metadata Metadata MSIL code
MSIL code MSIL code
optional lib3.dll
resources ’
. > Type
lib.bmp J Metadata
optional MSIL code

resources

ENGINEERING@SYRACUSE

Metadata iIn demoFiles.exe

ENGINEERING@SYRACUSE

il

Edt Visw Projsct Buld Dsbug Tools

-la-sH@| L RR o -
%.'LM|

Ill¢

| %% %

wWindow Help

File View Help

» Debug

¥ Dependsncies R -
| G ds.Tables["programmaticTable"] = | b B 32 33 -
i [=] o3| Sy | ¢ & |4,

Eed

=181 x|

| Obtert Browser | GetDirectoryatre Metod [T [e e D o e
Fru IggdemoF\Ies‘Test b MANIFEST est_GetFiles(stringl] args)
2T+ @ demcFies o8 Solution ‘demaFilss’ (1 project)
= [Assemblylnfo E- demoFiles
T [using System; i
2 - P .class public auto ansi beforefieldinit (= ‘5 References
using System. IO & _asm: private class [mscorib]System R eflection Assembly) System
using System.Reflection; B ctor - voidisting) (3 System,Data
) GetFiles - stringl]l) = System, XML =
— £ namespace demoFiles Gettodules : class [mscorlib)Systern. Reflection Maodule])[] App.ico
i GetTypes : class [mscorib]System. Type(]] AssemblyInfo.cs —
class Title - GetFiles GetAssemblyInfo.cs =%
{ class public auto ansi beforefieldinit GetFiles.cs ﬁ
internal static wvoid Me chor : void() Test.cs
¢ files - stringl][string) g
P =
Console.Write(™a I B show: voirfstring(Lbool £
string tewmp = new sci - Test o
Console.Write ("in {0 class private auto ansi beforefieldinit S
Console.Writeline|); or vl =18l x| .
L , Main : voidisting] [-assenoiy extern mscornio o
)) Test_Getdssemblyinfa - voidisting) |;355€MP1Y extern nscor
[ineernal stacie vold Mg B Test GelFils * voidfstinall ¢
1 B Tile - d .publickeytoken = {B7 7R 5C 56 19 34 EO 89) iz
i . -ver 1:0:3300:8
console.Wrire(Mn (L ¥ class private auto ansi beforsfisldinit
string temp = new sti ctor - woid(] ;
Comsole.Write(™n {0} Major weid]sting) -assembly demoFiles
r } Minor : vaid[string) .custom instance void [mscorlib]System.Reflection.AssemblyKeyHameAttribute:
Ot .custom instance void [mscorlib]System.Reflection.AssemblyKeyFileAttribute:
-0 //0 .custom instance void [mscorlib]System.Reflection.fssemblybDelaySignAttribui
class Test .custom instance void [mscorlib]System.Reflection.AssemblyTrademarkAttribui
i .custom instance void [mscorlib]System.Reflection._AssemblyCopyrightAttribui
fi-———< test finding £:|assembly demoFiles -custom instance void [mscorlib]System.Reflection.fssemblyProductAttribute:
.custom instance void [mscorlib]System.Reflection.fAssemblyCompanyfAttribute:
- | srari i T ver 1:0:976:37339 .custom instance void [mscorlib]System.Reflection.AssemblyConfigurationAattr
incernal stacic wvoid Te _custom instance void [mscorlib]System.Reflection.AssemblyDescriptionAttrit
¢ 5] .custom instance void [mscorlib]System.Reflection.AssemblyTitleAttribute::.
GerFiles gf = new GetFILIES(]: #/ -—— The following custom attribute is added automatically, do not uncomr
foreach(string pattern in args) #/ .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribute:
{ 124
string text = "Searching for files matching command line| -hash algorithm Bx808888884
text += partern: h .ver 1:8:976:37339
Title.Minor(text); .module demoFiles.exe
i// MUID: {3C3D5238-877A-47DF-913A-BA2FB8BB7E20}
4] .imagebase Bx06400008
- -subsystem Bx000800003
| Find Symbal Results - 1 match Found _file alignment 512
) =4 GetDirectaryMame(string) {System.I0.Path) .corflags 0x000866081
128 CSUNCSESS1 icodeldemoFilest Test.cs (71, 27) // Image base: BxB3a700808
| 4
TaskList | Bl cutput @ Find Symbol Results | T3] index Results for path dlass, all members |
| Ready Il || tnsa Cal 7 ch7 || Jms]

il start |J 85 BB e ’>|J (3 cisuns... | csesat

| B sticky o..| w0 demeFiles.. | Flavp.Exe |

jerasoft .. | 7 catncs. |[7 manirest | [5G G B LSS RSSO

9:36 AM

Versioning

- Assemblies can be public or private:
- A private assembly is used only by one executable, and no version
information is checked at load time.

- Private assemblies are contained in the project directory or, if there is a config
file, in a subdirectory of the project directory.

- A shared assembly is used by more than one executable, and is loaded
only if the version number is compatible with the using executable.

- Shared assemblies reside in the Global Assembly Cache (GAC), a specific
directory.

- Version compatibility rules can be configured by the user.
- Since no registry entries are made for the assembly, each user executable

can attach to its own version of the assembly. This is called side-by-side
execution by Microsoft.

- A shared assembly is created from a private assembly, using one of
Microsoft’s utilities provided for that purpose.

ENGINEERING@ SYRACUSE

Useful Interfaces

- IComparable—method
- Int CompareTo(object obj);

- Return:
* Negative=> less
- Zero => equal

« Positive => greater

- |Cloneable—method
- object clone();

- ICollection—properties and method
- int count { get; }
- bool IsSynchronized { get; }
- object SyncRoot { get; }
- void CopyTo(Array array, int index);

ENGINEERING@ SYRACUSE

Useful Interfaces

- IEnumerable—method

- System.Collections.IEnumerator
GetEnumerator();

- IEnumerator—property and methods
- object Current { get; }
- bool MoveNext();
- void Reset();

ENGINEERING@ SYRACUSE

Useful Interfaces

- IDictionary - IList

- bool IsFixedSize { get; } - bool IsFixedSize { get; }

- bool IsReadOnly { get; } - bool IsReadOnly { get; }

- object this[object key] { get; set; } - object this[object key] { get; set; }

- ICollection keys { get; } - void Add(object key, object value);

- |Collection values { get; } - void Clear();

- void Add(object key, object value); - bool Contains(object key);

- void Clear(); - int IndexOf(object value);

- bool Contains(object key); - void Insert(int index, object value);

- System.Collections.IDictionaryEnumerator - void Remove(object value);
GetEnumerator(); - void RemoveAt(int index);

- void Remove(object key);

ENGINEERING@ SYRACUSE

C# Libraries

System

- Array, Attribute, Console, Convert, Delegate, Enum, Environment, EventArgs,
EventHandler, Exception, Math, MTAThreadAttribute, Object, Random,
STAThreadAttribute, String, Type

System.Collections

- ArrayList, HashTable, Queue, SortedList, Stack
System.Collections.Specialized

- ListDictionary, StringCollection, StringDictionary
System.ComponentModel

- Used to create components and controls

- Used by WinForms
System.ComponentModel.Design.Serialization

- Used to make state of an object persistant
System.Data

- Encapsulates use of ADO.NET

ENGINEERING@ SYRACUSE

More C# Libraries

- System.Drawing—GDI+ support
- System.Drawing.Drawing2D—special effects
- System.Drawing.lmaging—support for .jpg, .qgif files
- System.Drawing.Printing—settings like margins, resolution
- System.Net—support for HTTP, DNS, basic sockets
- System.Net.sockets—sockets details

- System.Reflection
- View application’s metadata including RTTI

- System.Runtime.InteropServices
- Access COM objects and Win32 API

ENGINEERING@ SYRACUSE

Remoting Libraries

- System.Runtime.Remoting
- System.Runtime.Remoting.Activation
- Activate remote objects
- System.Runtime.Remoting.Channels
- Sets up channel sinks and sources for remote objects
- System.Runtime.Remoting.Channels.HTTP
- Uses SOAP protocol to communicate with remote objects
- System.Runtime.Remoting.Channels. TCP
- Uses binary transmission over sockets
- System.Runtime.Remoting.Contexts
- Set threading and security contexts for remoting
- System.Runtime.Remoting.Messaging
- Classes to handle message passing through message sinks
- System.Runtime.Remoting.Meta data
- Customize HTTP SoapAction type output and XML Namespace URL
- System.Runtime.Remoting.Proxies
- System.Runtime.Remoting.Services
ENGINEERING@ SYRACUSE

You Must Be Joking—More Libraries!

- System.Runtime.Serialization

- System.Runtime.Serialization.Formatters
- System.Runtime.Serialization.Formatters.Soap

- System.Security
- System.ServiceProcess

- Create windows services that run as Daemons
- System.Text.RegularExpressions

- System.Threading

- AutoResetEvent, Monitor, Mutex, ReaderWriterLock, Thread, Timeout,
Timer, WaitHandle

- Delegates: ThreadStart, TimerCallBack, WaitCallBack

- System.Timers
- Fire events at timed intervals, day, week, or month

ENGINEERING@ SYRACUSE

Web Libraries

- System.Web

- System.Web.Hosting
- Communicate with IS and ISAPI run-time

- System.Web.Mall

- System.Web.Security
- cookies, web authentication, Passport

- System.Web.Services—close ties to ASP.NET
- System.Web.Services.Description
- System.Web.Services.Discovery

- System.Web.Services.Protocol—raw HTTP and SOAP requests
- System.Web.SessionState—maintain state between page requests

- System.Web.Ul—access to WebForms

ENGINEERING@ SYRACUSE

WinForms and XML Libraries

- System.Windows.Forms—Forms-based GUI design

- System. Xml—XML DOM

- System.Xml.Schema
- Authenticate XML structure

- System.Xml.Serialization
- Serialize to XML

- System.Xml.XPath
- Navigate XSL

- System.Xml.Xsl
- Support for XSL — XML stylesheets

ENGINEERING@SYRACUSE

So How Do We Learn All This Stuff!

ClassView -> Class Browser -> Help

to the rescue!

ENGINEERING@SYRACUSE

Language Comparison

- Standard C++

Is an ANSI and ISO standard.
Has a standard library.

Universally available:
+ Windows, UNIX, MAC

Well-known:
- Large developer base.
- Lots of books and articles.

Programming models supported:
- Objects

- Procedural

- Generic

Separation of interface from
iImplementation:

- Syntactically excellent

* Implementation is separate from class
declaration.

- Semantically poor
+ See object model comparison.

.Net C#

- Is an ECMA and ISO standard.
- Has defined an ECMA library.
- Mono project porting to UNIX
- Relatively new, but popular in
Windows ecosystem
- Large developer base.
- Lots of books and articles.
- Programming models supported:
- Objects
- Generic
- Separation of Interface from
Implementation:
- Syntactically poor

* Implementation forced in class
declaration.

- Semantically excellent
« See object model comparison.

ENGINEERING@ SYRACUSE

ENGINEERING@SYRACUSE

ENGINEERING@SYRACUSE

