
Asynchronous Systems
Jim Fawcett

Software Modeling

Copyright © 1999-2017

References

• Java Concurrency in Practice, Brian Goetz, et al., Addison-Wesley, 2006

• This is the best book I’ve seen on concurrency. Much of the material is language

agnostic.

• Concurrent Programming in Java, 2nd edition, Doug Lea, Addison-Wesley

2000

• Several of the slides in this presentation closely follow the material in this book. In

some cases the slides simply paraphrase material presented there.

• C# 5.0 in a Nutshell, Albahari & Albahari, O’Reilly, June 2012

• See chapters 14, 22, and 23.

• “Evolution of Synchronization in Windows and C++,” Kenny Kerr, MSDN

Magazine, Nov 2012

• “Evolution of Threads and I/O in Windows,” Kenny Kerr, MSDN Magazine,

Jan 2013

Agenda

• What is an asynchronous system?

• When should you use asynchronous

methods?

• Operating system support—demo code
• Asynchronous methods

• Asynchronous delegates

• Asynchronous callbacks

• Design forces

Synchronous—Definitions

• orbital satellites
• Stationary relative to Earth

• neurobiology
• Mental processes that entrain to external stimuli as in epilepsy

• communication systems
• Information is contained in frames with constant frame rate

• radio and radar detection
• Carrier is removed by an oscillator that locks onto the incoming carrier

frequency

• software
• A function call that blocks the caller until finished

• A component that collects input by waiting for data from a single sender at

some point in the code, e.g., cin

Asynchronous Software

• Function call returns immediately without waiting for

function completion.

• One of the following happens after return:
• Caller needs no reply and ignores the callee.

• Caller must poll for completion status, e.g., keep checking.

• Caller must provide a callback for the callee to use when finished.

• Caller deposits a message in a queue for the callee to process at some

later time, without expecting or waiting for a reply.

• The callee may, but is not required to, deposit a reply in a queue owned

by the caller.

• If a system is based on message passing, the callee can react to inputs

from an arbitrary number of sources, arriving in any order, at any time.

• Very flexible.

Synchronize (synonym—serialize)

• Just to be confusing, the word synchronize, pronounced and
spelled very much like synchronous, means something entirely
different.

• For software, synchronize means to control access to a
resource shared between threads so that only one thread at a
time is allowed to use the resource.
• The resource is locked by a thread and no other thread gets access until the

using thread releases the lock.

• A lock may apply only to some specific code location or to an object accessed
anywhere in the code.

• A thread can lock a resource by using any of the following:

• C# lock, .Net Monitor, critical section, mutex

• The following resources are often shared between threads:

• Queues, I/O streams, files, and windows

• Static members of a class

• C and C++ can share global variables

What Is an Asynchronous System?

• Two parties communicate without being bound to a

specific time.
• E-mail is a classic example.

• Message is sent, can be read at any later time.

• No constraints on when message is sent.

• No constraints on when message is read as long as it is later than

sending time.

• Requires four things:

• Sender

• Receiver

• Place to put messages

• Transmission facility that does not require any action on part of sender

or receiver, other than to send and collect message

FIFO Queues

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

• First In First Out queues are often constructed

with linked lists.
• Objects enter the queue by getting linked to one end.

• Objects leave the queue by getting unlinked from the other end.

Important Property of Queues

• Queues decouple a receiver from its sender.
• Sender and receiver can be on different threads of a given process.

That requires a thread-safe queue.

• Receiver does not need to process an object when it is handed off by

the sender.

• Queues can eliminate timing mismatches between sender and

receiver.

• One might be synchronized in nature, requiring message passing at

fixed time intervals—a radar signal processor for example.

• The other might be free running, handling messages with different

service times, preventing synchronized operation.

• Queues can support reliable communication over unreliable media,

simply holding onto messages they can’t send until the transmission

link becomes available.

Message Passing between Threads

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

Send and Receive Queues

• Essentially, a SendQ lets:
• User thread create requests and post for sending.

• Send thread dequeues messages and pushes into communication

channel. It remembers requests it has not processed yet.

• A RecvQ lets:
• Remote receive thread posts message without waiting for receiver

processing thread to be ready to accept it.

• Valuable remote resource need not block waiting for a hand-off to receiver.

• Send queue allows the client’s main thread to service other

important tasks as well as interact with the remote resource.

• Receive queue allows the server’s main thread to process

requests serially without blocking the sender.

What Is an Asynchronous System?

• So, is every message-passing system asynchronous? No.

• Exchange between a browser and web server is message based, usually employing

Get or Post HTTP messages.

• That exchange is synchronous. The browser doesn’t return until a page is delivered

—either the page requested or an error page.

• Is every asynchronous system message based? No.

• .Net delegates and remoting proxies support asynchronous operations via

BeginInvoke and EndInvoke procedure calls.

• Examples of asynchronous systems:

• Windows operating system supports the ability to react to many kinds of events

using each window’s message loop.

• Socket listeners improve their availability by spawning client handler threads.

• All the radar systems I worked on use asynchronous messaging between layers.

• E-mail, your Project #4, many enterprise systems, …

Why Use Asynchronous Systems?
Adapted from Concurrent Programming in Java, Doug Lea, Addison-Wesley, 1997

• System needs to be reactive.

• System must have high availability.

• Services must be controllable.

• System needs to send asynchronous

messages.

• System may have to handle bursty events.

WinMain

implements

message loop

windows

implements

message queue

and

message

routing

provides

win32 API application

functionality

windows

controls

WinProc

implements

message

handling

for

application

messages

Classic Windows Processing

messages

register windows

"class"

create window

show window

update window

get message

dispatch message

process

windows

messages

application function calls

win32 API calls

user events

via

keyboard or mouse

messages

• The system

needs to be

reactive.

• It does more

than one thing

at a time, each

activity reacting

in response to

some input.

• Each event

results in a

message in

windows queue.

Response

happens later, if

at all.

Why Use Asynchronous Systems?

Windows, Queues, and Messages

Active Window

keyboard

mouse

other

devices

Window Manager

event

handler

function

Raw Input Queue

• Graphical User Interfaces are the stereotype of message-
passing systems using queues.

Main thread in window process

blocks on call to GetMessage

until a message arrives. Then it

is dispatched to an event

handler associated with that

message.

Messages, filtered for this window, are

posted to the window’s message

queue by an operating system thread.

Windows Messaging

• With the architecture shown on the previous slide

a window can respond to any of many different

inputs, including:
• User inputs from mouse movement, mouse buttons, and keyboard

• System events, e.g., window being uncovered by an obscuring

window, and so needing to repaint its region of the screen

• Message generated from within the program running in that

process, based on strategies put in place by the designer.

• Even if several messages arrive before a

predecessor is processed, they won’t be lost.

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
r
e

a
te

T
h

r
e

a
d

data

port

listener

port

• The system must have high availability.

• One object may serve as a gateway

interface to a service, handling each

request by constructing a thread to

asynchronously provide the service.

• Socket listener must quickly dispose of a

connection so that it can go back to

listening for other requests to connect and

clients find the server available.

Why Use Asynchronous Systems?

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

Non-Blocking Communication in Asynchronous System

FIFO queue

processing thread

receiver thread

• The services need to be controllable.

• Activities within threads can be suspended, resumed, and stopped
by other threads. Controller issues command but does not wait for
action.

• The system needs to send asynchronous messages.

• The calling object may not care when a requested action is
performed, at least within some reasonable bounds.

Why Use Asynchronous Systems?

uniform receiverbursty sender

Bursty System • The system may need

to handle bursty

events.

• Some events may occur

in rapid succession for

brief periods, perhaps

far faster than the

system can react to

them. When this

happens, an

asynchronous system

can enqueue requests

to work on at a later

time.

Why Use Asynchronous Systems?

• A synchronous radar would

require the signal processor

to wait when it sends a report

for the report to be processed

at several levels.

• This just will not work. The

signal processor must

operate at a high rate of

speed to service all of the

cells in coverage.

• Each radar component must

function independently on the

inputs provided to it.

Synchronous Radar

Just Won’t Work!
RSP::ProcessReport()

RC::BeamReport()

TDM::ProcessReport()

TDM::DataEdit()
TDM::TrackAssoc() TDM::Send()

OI::Display() COM::Send()

REM::Process()

Hypothetical Radar Processing Chain

detection

report

detection

report

detection

report

target

report

target

report

track

report
track

report

target

report

target

report

track

report

sector

report

sector

report

Beam

Selection

Commands

edit

commands

Radar Signal

Processor

Radar Control

Target Data

Management

Communications

Operator

Interface

detection

report

detection

report

target report,

track update

target report,

track update

Remote Site

sector

report

Typical Distributed System - Radar Processing• In the asynchronous

radar each component

computes its output and

deposits it in a queue

for processing by the

next layer.

• The messages at the

top of the chain are

small and arrive at a

high rate.

• Message lower in the

chain are larger and

less frequent.

Asynchronous Radar

• There are several ways to support asynchronous operation. All of these use

asynchronous methods:

• Create a new thread

• Pass it the method to run asynchronously, using a ThreadStart delegate.

• Use a C# Task
• Bind a lambda to the task, execute, and eventually wait for a result.

• Use a thread from a ThreadPool

• Queue a work item with a delegate pointing to the method to run asynchronously.

• Use a BackgroundWorker in a Form

• Has useful events for signaling progress and completion.

• Use a delegate’s BeginInvoke(), EndInvoke() methods

• Runs the delegate’s methods asynchronously

• Use a Form’s BeginInvoke(), EndInvoke() methods

• Allows a worker thread to call a Form method running on the Form’s UI thread.

• Use a class that implements ISynchronizeInvoke interface

• The ISynchronize interface declares methods:

InvokeRequired(), BeginInvoke(), EndInvoke(), Invoke()

Asynchronous Operation

Create a Thread

class QueuedMessageDemo {

// declare and initialize member data used as

// parameters for ThreadProc

public void ThreadProc() { … }

}

• Use System.Threading.ThreadStart delegate:

Thread child

= new Thread(new ThreadStart(demo.ThreadProc));

child.Start();

• Here, demo is an instance of QueuedMessageDemo. The

ThreadProc function runs asynchronously and the call to Start returns

immediately.

Use Task

• Tasks accept a delegate or lambda to define

operation.

• Tasks can return a value or handle to an instance.

Task<int> t = new Task<int>(

() => dt.methodWithResult(taskName, sleepTime)

);

t.Start();

// do some useful work here

int id = t.Result; // blocking call

ThreadPool

class TpDemo {

// declare and initialize member data used as

// parameters for ThreadProc

public void ThreadProc() { … }

}

WaitCallback callforward

= new WaitCallback(dem.threadProc);

ThreadPool.QueueUserWorkItem(callforward,null);

• The instance dem is of type TpDemo. WaitCallback is a

delegate defined in System.Threading. The call to

QueueUserWorkItem is asynchronous, returning immediately.

BackgroundWorker

class FormWithTask : Form

{

public delegate void TextInserter(string text);

// …

• Start background ThreadPool thread:

backgroundWorker1.RunWorkerAsync();

• Define background task:

private void backgroundWorker1_doWork(

object sender, DoWorkEventArgs e

)

{

this.Invoke(textInserter, new object[] { “…” })

// …

}

Asynchronous Delegate

class Asynch

{

public delegate string

SlowCallDelegateType(int secs);

public SlowCallDelegateType callDelegate;

public string SlowCall(int millisecs) { … }

// more class functionality

}

asOp.callDelegate =

new Asynch.SlowCallDelegateType(asOp.SlowCall);

• // begin asynchronous operation

IAsyncResult ar

= asOp.callDelegate.BeginInvoke(1000,null,null);

// do some useful work here, then wait
// on asynchronous call to finish

string result2 = asOp.callDelegate.EndInvoke(ar);

• Here, asOp is an instance of Asynch.

Delegate’s BeginInvoke Arguments

• The arguments of BeginInvoke depend on the signature

defined by the delegate.
• The first arguments are the signature arguments ordered as:

• in parameters

• out parameters

• in/out parameters

• ref parameters

• These are followed by the final two arguments of type:

• AsyncCallback

• AsyncState

• The return value of BeginInvoke is an instance of

IAsyncResult.

Delegate’s EndInvoke Arguments

• The arguments of EndInvoke consist of the non-in

parameters and the IAsynchResult instance returned by

BeginInvoke:
• The first arguments are the signature arguments ordered as:

• in parameters omitted

• out parameters

• in/out parameters

• ref parameters

• These are followed by the final argument of type:

• IAsynchResult instance returned by BeginInvoke.

• The return value of BeginInvoke is the return value of the

delegate’s function.

Form BeginInvoke

if(ar != null)

_form.EndInvoke(ar);

teva.msg = file;

if(_form.InvokeRequired)

{

ar = _form.BeginInvoke(

OnFileEvent,

new object[] { this, teva }

);

}

else

OnFileEvent(this,teva);

• _form.BeginInvoke(…) is an asynchronous call, e.g., returns immediately.

teva is an instance of a class derived from EventArgs.

• Note that every call to BeginInvoke should be matched by an EndInvoke;

otherwise, you will have a memory leak—each BeginInvoke allocates a structure
in the kernel which is deleted by EndInvoke.

Form’s BeginInvoke Parameters

• The arguments of BeginInvoke are:

• A System-defined delegate accepting functions of the form:

• void OnMyEvent(object sender, EventArgs ev);

• An array of arguments matching the delegate:

• object[] args = new object[] { this, teva };

Here teva is an instance of a class derived from

System.EventArgs.

• The return value of BeginInvoke is an instance of IAsyncResult.

• The argument of EndInvoke is:
• The instance of the IAsyncResult returned by BeginInvoke(…).

Design Forces

• The primary design forces are safety and

liveness:

• Safety

• Nothing bad ever happens to an object or resource.

• Liveness

• Something eventually happens within an activity.

• Performance

• How soon and quickly are services provided?

• Reusability

• How easy is it to use services in another programming context?

Safety

•Read/Write conflicts

• One thread attempts to read a field while

another writes to it.

•Write/Write conflicts

• Two threads attempt to write to the same

field.

Liveness

• In a live system we expect to make progress toward completion. This

may not happen immediately for the following reasons:

• Locking

• A lock or synchronized method blocks one thread because another thread holds

the lock.

• Waiting

• A thread blocks, on a join() or wait() method, waiting for an event, message, or

result computed by another thread.

• Input

• An IO method waits for input that has not arrived yet.

• Contention

• A runnable thread fails to run because other threads are occupying the CPU or

other needed resources.

• Failure

• A method encounters an exception or other fault.

Liveness

• A permanent lack of progress may result from:

• Deadlock

• Circular dependencies between locks.

• Missed event

• A thread starts waiting for an event after the event occurred.

• Nested lockout

• A blocked thread holds a lock needed by another thread attempting to wake it up.

• Livelock

• A continuously retried action fails continuously.

• Starvation

• Scheduler fails ever to allocate CPU time to a waiting thread.

• Resource exhaustion

• A thread attempts to access one of a finite set of resources, all of which are in

use (file handles for example).

• Distributed system failure

• A remote machine, hosting a needed service, is unavailable.

Performance
• Performance is usually described by the metrics:

• Throughput

• Number of operations per unit time, e.g., messages processed, files sent, …

• Latency

• Elapsed time between a request for service and its satisfaction

• Capacity

• The number of simultaneous activities that can be supported for a given throughput or

maximum latency

• Availability

• Number of simultaneous requesters that can be supported without failures to connect

• Efficiency

• Throughput divided by the amount of CPU resources needed, e.g., CPUs, memory, IO

devices, …

• Scalability

• Rate at which throughput or latency improves when resources are added to the system

• Degradation

• Rate at which latency or throughput decreases as more clients or activities are added without

adding new resources

Performance
• Factors that affect performance

• Partitioning of distributed resources

• Affects the amount and sizes of data sent between processes, machines,
and networks.

• Caching

• Holds data that has been sent previously for possible use later. Attempts to
avoid retrieving resources already held. May induce problems with
consistency and staleness of the data.

• Locking strategy

• May trade off the use of immutable objects against use of mutable locked
objects, e.g., create new immutable objects to achieve a state change,
rather than locking and modifying a mutable object’s state.

• Use of background tasks

• Define activities that can usefully proceed while main activities are blocked.

• Use algorithms specifically designed for concurrency

• Some efficient sequential algorithms do not lend themselves to efficient
concurrent implementation, but there may be good concurrent versions
available.

Threading Memory Model
• Both the compiler and the processor that your code runs on are allowed to:

• Cache variables in registers or other cache memory.

• Rearrange instructions.

• For single threads, the compiler and processor are constrained to preserve

sequential semantics, e.g., program order semantics.

• For interactions between threads there are no such guarantees.

• The lock construct and volatile qualifier are intended to extend these

guarantees to threads operating in a multithreaded environment.

• Any thread running within a lock body or in a synchronized function will enjoy the

program order semantics guarantee.

• Releasing a lock forces a flush of all writes from the thread’s working memory.

• Acquiring a lock forces a reload of all fields accessible to the acquiring thread.

• If a variable is qualified as volatile:

• Any written value is flushed by the writer thread before the writer performs any other memory

operation.

• Reader threads must reload the values of volatile variables for each access.

