
Arguments and ResultsJames NobleMRI, School of MPCE,Macquarie University, Sydney.kjx@mri.mq.edu.auJuly 31, 1997AbstractIf an object oriented program is a collection of communicating objects, then the objects' pro-tocols de�ne the languages the program speaks. Unfortunately, protocols are di�cult to designin isolation, so many programs' protocols are not as well designed as they could be. This paperpresents six patterns which describe how objects protocols can be designed or redesigned. By usingthese patterns, programs and designs can be made more simple, more general, and more easy tochange.IntroductionObject's protocols, also know as interfaces, are very important in object oriented design. An object'sprotocol is the face the object presents to other objects surrounding it. Using an object's protocol, otherobjects in the program can use the object as a server, thus accessing the behaviour the object provides.Similarly, an object can act as a client to other objects, in turn using their protocols to access theirservices.This paper presents six patterns for designing object oriented protocols (see Figure 1). The patternsfocus on two aspects of protocol design | the messages objects can receive, and the results objectsreturn in response to the messages. These patterns do not attempt to describe novel techniques, rather,they present well-established solutions for object oriented design. These patterns should be usefulfor introducing the techniques to novice programmers, and for more experienced programmers, shouldillustrate when particular techniques are applicable and their relative strengths and weaknesses.These patterns are interrelated, but they do not form a whole language. Rather, the patterns aretwo fragments (Patterns about Arguments and Patterns about Results) which may one day formpart of a larger pattern language. Each of the fragments has the same structure (see Figure 2) withone general pattern, and a couple of more speci�c patterns which re�ne the general pattern to handlespecialised contexts. Figure 2 also illustrates two relationships between the patterns. One patterncan re�ne another pattern, meaning one pattern is a more speci�c version of the other. Alternatively,patterns can con
ict, meaning that the patterns are mutually exclusive, each providing a di�erentsolution to a similar problem [24].ForcesEach of these patterns resolves a number of di�erent forces, and some con
icting patterns resolve similarproblems in di�erent ways. Many of the patterns consider the ease of reading or writing of a particularsolution | generally, solutions which are easy to write are more likely to be chosen by programmers,and solutions which are easy to read are likely to be easier to maintain. Since smaller, simpler programsare generally easier to read and write, the patterns are concerned with the complexity or size of a design,such as the number of messages an object understands, or the number of arguments needed by a message.Since much complexity cannot be avoided, the patterns prefer complexity to be handled once in serverobjects, rather than many times in every client object which uses the servers.1

Pattern Problem SolutionArgumentsObject How can you simplify a complex protocolthat has a regular argument structure? Make an Arguments Object to capture thecommon parts of the protocol.SelectorObject How can you simplify a protocolwhere several messages di�er mainly intheir names? Make a single message taking an objectrepresenting the message selector as an ex-tra argument.CurriedObject How can you simplify an extremely com-plicated protocol? Send simpler messages to an intermediarywhich elaborates them within its context.ResultObject How can you manage a di�cult answer toa di�cult question? Make a Result Object the whole answer tothe question.FutureObject How can you answer a question while youthink about something else? Make a Future Object which computersthe answer in parallel.LazyObject How can you answer a question that iseasy to answer now, but that may neverbe asked? Make a Lazy Object which can answer thequestion later, if necessary.Figure 1: Summary of the Patterns
Arguments Object

Selector Object Curried Object

Result Object

Future Object Lazy ObjectFigure 2: The Structure of the LanguageSeveral patterns address the cohesion and coupling of the resulting designs, as designs with highcohesion within objects and low coupling between them are more
exible, understandable, and easierto maintain. This is often related to whether a concept is represented explicitly by a single object in adesign, or whether it is implicit in the communication between several objects. Representing a conceptexplicitly as an object generally makes it easier to identify the concept within the design, to change theimplementation of the concept if necessary, and to reuse the concept elsewhere, especially if the objectrepresents a real concept from the program's application domain. The patterns are also concerned withe�ciency | the time and space cost of a design, and the number of objects it requires at runtime.ConsequencesA common principle underlies all these patterns | that designs can often be improved by introducing(�nding) additional objects from within the program. At �rst, the newfound objects seem out of placein the program, but as the program evolves, the found objects become better integrated into the design,and can be recognised as modelling concepts from the application domain.Because they �nd new objects, these patterns tend to generate designs with many small, simpleobjects1, introducing an extra level of indirection, and imposing space and time costs at runtime. Allthese patterns simplify a design locally (for example, by changing one particular protocol) but imposeglobal changes to the program (because extra objects are needed to implement the changed protocol).As a result, although objects may be easier to understand in isolation, the global design of the programmay become confused. To quote Alan Perlis: In the long run every program becomes rococo | thenrubble. [19]. If these patterns are applied injudiciously they will accelerate this process.1This is not limited solely to these patterns. Many other patterns have this e�ect, including those in Design Patterns[9] and Smalltalk Best Practice Patterns [5], as do Parnas's criteria for program decomposition [18].2

FormThe patterns are written in electric modi�ed Portland form. Each begins with a question (in italics) de-scribing a problem, followed by one paragraph describing the pattern's context, and a second describingthe forces the pattern resolves. A boldface \Therefore:" introduces a summary of the solution (alsoitalicised) followed by the a description of the solution in detail. Then follows an example of using thepattern, the patterns consequences (bene�ts �rst, a boldface But:, then the liabilities) and �nally someknown uses and related patterns.Patterns about ProtocolsObjects communicate via protocols | a program's protocols are the glue that binds its objects together.The following three patterns describe how objects can be found within protocols.1 Arguments ObjectHow can you simplify a complex protocol that has a regular argument structure?Some objects have large and complex protocols with a regular internal structure. For example, agraphical View object will provide protocol for drawing many types of objects in many di�erent ways,but almost every message will take arguments which specify the colour, stipple, and line thickness touse when drawing. The same combinations of arguments may occur across many protocols, and as aresult, many arguments may be passed in parallel through many messages and across many objects.Large protocols are easy to use because they o�er a large amount of behaviour to their clients.Unfortunately, they are often di�cult or time consuming to implement, and for client programmers tolearn. Every client of a large protocol depends upon the protocol's �ne details, such as the names andarguments required by each message, and these dependencies make large protocols di�cult to change.Moreover, large protocols are more likely to be changed than small protocols | adding an eleventhargument to a message with ten arguments is qualitatively quite di�erent to adding a second argumentto a unary message. To quote Alan Perlis: If you have a procedure with 10 parameters, you probablymissed some [19].Therefore: Make an Arguments Object to capture the common parts of the protocol.In its simplest form, an Arguments Object should have one variable for each argument to beeliminated from the protocol, and the usual messages to access and update its variables. Change theprotocol and its implementations to accept a single Arguments Object in place of the eliminatedarguments, and change the protocol's clients to create Arguments Objects as required. To supportoptional arguments, initialise the Arguments Object's variables with default argument values whenit is created.ExampleConsider the protocol provided by a graphical View object:drawRectangleFrom: topLeft to: bottomRight colour: colour�llRectangleFrom: topLeft to: bottomRight colour: colourdrawOvalFrom: topLeft to: bottomRight colour: colourThese messages take a number of arguments in common: topLeft, bottomRight and colour. AnArguments Object can eliminate these arguments from the protocol. The Arguments Object(which we will call a Graphic) uses three variables to replace the common arguments. Graphic's protocolincludes messages to create new Graphic objects, and to read and write these variables. The View'sprotocol can be changed to accept a single Graphic argument, rather than the three common arguments.
3

client view

drawRectangleFrom:to:colour:

fillRectangleFrom:to:colour:

drawOvalFrom:to:colour:

\Create a Graphic"g := Graphic from: topLeft To: bottomRight Colour: colour.\Draw it"view drawRectangle: g.
client graphic1 graphic2 graphic3 view

from:To:Colour:

drawRectangle: graphic1

from:To:Colour:

fillRectangle: graphic2

from:To:Colour:

drawOval: graphic3

ConsequencesAn Arguments Object makes a tradeo� between the size of a complex protocol (M messages withN common arguments) versus M messages with N fewer arguments plus a new Argument Objectwhich requires N arguments to create it. The resulting protocols are usually easier to learn and to read.An Arguments Object decreases the coupling between objects involved in the protocol | objectsare coupled to the Arguments Object object, rather than to each other | so many changes to theprotocol are limited to the Arguments Object and those objects which fundamentally rely on thechanged protocol. Ideally, an Arguments Object will explicitly reveal an object from the applicationdomain. But: Arguments Object clients may be more di�cult to write, as the programmer mustunderstand both the server's protocol and the Arguments Objects, and create the necessary Argu-ments Objects as appropriate. As with all these patterns, this pattern introduces an additional objectinto the design, requiring modi�cations to the program and increasing runtime space and time costs.Known UsesMacApp uses Event objects to package the arguments sent to widgets in response to user actions [22].The X Window System's drawing operations use GraphicsContexts to package up a large number ofarguments such as the font, colour, line width, and clip region [21]. Smalltalk's Point and Rectangleobjects can be seen asArguments Objects which package up two or four integer arguments to describepoints or rectangles [4]. Smalltalk also uses Message objects which record the arguments and name ofa message which has caused an error [10].
4

Related PatternsThe following two patterns describe how Arguments Object can be applied in particular situations.The number of message names in a protocol can be reduced by using a Selector Object (2). Constantor slowly-varying arguments can be factored out by a Curried Object (3), which introduces anintermediary object to elaborate a protocol.2 Selector ObjectHow can you simplify a protocol where several messages di�er mainly in their names?Some protocols include several messages which perform the same underlying function. For example,a graphical View object provides many messages which draw graphical objects. These messages takesubstantially the same arguments and di�er in the �ne details of the precise function they perform |in the case of the View, whether to draw a rectangle, a �lled rectangle, or an oval.Protocols where many messages perform similar functions are often di�cult to learn and to use,especially as the similarity is often not obvious from the protocol's documentation. Because the messagesare conceptually closely related, they will often need to be maintained as a group, which will requirechanging a number of method implementations in servers and many di�erent message sends in clients.Therefore: Make a single message taking an object representing the message selector as an extraargument.Remove the similar messages from the protocol, and replace then with a single message which takesthe Selector Object as an additional argument. This message should perform the essential functionperformed by the messages from the original protocol, and use the Selector Object argument todiscriminate between the functions in detail (typically using multimethods or double dispatching [9]).Change the protocol's clients and servers to use the new protocol.In some cases, the Selector Object can be a very lightweight object, such as a symbol or enu-meration, which is used only to determine the �ne details of the function to be performed. In othercases, the Selector Object can have substantial state and behaviour of its own. If you already havean Arguments Object, the Selector Object can be often be folded into it, resulting in a MessageObject.ExampleConsider the protocol provided by a graphical View object, which uses a Graphic Arguments Objectas described above.drawRectangle: aGraphic�llRectangle: aGraphicdrawOval: aGraphicEach of these three messages performs essentially the same function | drawing on a View. Thedetails of the function (whether to draw a rectangle outline, a �lled rectangle, or an oval) are encodedin the message selector. In this example, we have an Arguments Object (the Graphic), so we canapply the Selector Object pattern to incorporate the message selector into the Arguments Object.Graphic can be extended to record a type, which selects either outlined rectangles, �lled rectangles, orovals to be drawn. View's protocol now contains only a single message, draw, modelling the one essentialfunction of the whole protocol.\Create a Graphic"g := Graphictype: #rectangle from: topLeftto: bottomRight colour: colour.\Draw it"view draw: g. 5

As an alternative, a family of Graphic subclass can be used, rather than the type argument.graphic := RectangleGraphicfrom: 10@10 to: 20@20 colour: #red.view draw: graphic.
client rectangle filledRectangle oval view

from:To:Colour:

draw: rectangle

from:To:Colour:

draw: filledRectangle

from:To:Colour:

draw: oval

ConsequencesThe Selector Object pattern is a re�nement ofArguments Object (1), and its bene�ts and liabilitiesare similar. The tradeo� is slightly di�erent | Selector Object trades o� N similar messages at theserver for 1 message with an extra argument plus the Selector Object and its creation message. Whenthis factorisation results in Selector Objects which have meaning in the domain, the protocol willbe smaller and easier to modify, and also easier to learn and to use. But: clients need to create theSelector Object, and servers need some mechanism to select the actual function the message willperform.Known UsesSelector Objects are often used to build object oriented interfaces to existing �le or graphics systems.For example, VisualWorks uses symbols representing �le access modes as arguments to messages tomanage �les [17]. Many OO graphics systems, again including VisualWorks, provide Geometric orGraphic objects which combine the Selector Object and Arguments Object (1) patterns.Related PatternsLightweight Selector Objects can often be Flyweights [9].3 Curried ObjectHow can you simplify an extremely complicated protocol?Over the course of a program, objects exchange messages, and the objects passed as arguments tothese messages are usually di�erent every time. Sometimes, an object will receive a series of messageswhere one or more arguments are constant. For example, a text editor will often draw a number ofdi�erent strings in exactly the same font size, typeface, and colour. Arguments may also be sent insequence, so that the argument to one message can be predicted from the corresponding argument of aprevious message | the text editor will draw the strings with the same left margin, but each o�set oneline lower on the screen.These kinds of arguments increase the complexity of a protocol. The protocol will be di�cult tolearn, as programmers must work out which arguments must be changed, and which must remain6

constant. This information is not explicitly represented in the protocol, and often not provided bystandard documentation. The protocol will be di�cult to use, as clients must cache constant argumentsbetween sends and compute the values of slowly-varying arguments.Therefore: Send simpler messages to an intermediary (a Curried Object) which elaborates themwithin its context.A Curried Object stores the constant or slowly varying arguments from the original protocol, andprovides a simpler protocol with these arguments eliminated. A Curried Object stores the originalserver object, and forwards messages to this object, passing along the stored arguments and updatingthe slowly varying arguments.To use a Curried Object, change clients so that rather than sending messages to the server, theycreate a curried object, initialise it as required, and send messages to it. Protocol can be added to theserver for creating and initialising a Curried Object which refers to that server. The original protocolcan remain publicly available in the server, or it can be restricted to the Curried Object.ExampleConsider drawing lines of text on a graphical view:font := Font named:
Times
.o�set := (0 @ (font textHeight)).view drawString:
This is an example
 at: origin font: font.view drawString:
to illustrate
 at: (origin + o�set) font: font.view drawString:
the problem
 at: (origin + (o�set � 2)) font: font.
client view

drawString:at:font:

drawString:at:font:

drawString:at:font:

The drawString:At:Font message takes three arguments. The �rst argument, the string to draw, isdi�erent for each message sent; the second argument, the point at which to draw the string, variesaccording to an arithmetic progression; and the third argument, the font to use, is constant.This protocol can be simpli�ed by introducing a Curried Object. The Curried Object (which wewill call a Pen) requires three variables to hold the View server object, and the origin and font argumentsof the drawString:At:Fontmessage. Pen's protocol will include messages to read and write these variables,and a single argument message drawString to draw a string and advance to the next line (updating theorigin variable). The View object needs a single argument message pen which returns a new Pen objectassociated with the View. Using a Pen, the example above becomes:pen := view pen at: origin font: (font named:
Times
).pen drawString:
This is an example
.pen drawString:
to illustrate
.pen drawString:
curried objects
.
7

client pen view

pen

new

at:font:

drawString:

drawString:at:font:

drawString:

drawString:at:font:

drawString:

drawString:at:font:

ConsequencesCurried Object is quite similar to Arguments Object (1), and shares most of the bene�ts andliabilities of that pattern, however, it requires fewer changes to existing servers. But: Curried Objectdisplaces the receiver of the protocol, while Arguments Object (1) does not. Curried Object thusintroduces action at a distance, because messages sent to one object (the Curried Object) are actuallyexecuted by another (the original server object). A Curried Object is at the same level of abstractionas its server, and acts as an alias for the server. Programmers need to know about both the originalserver and the Curried Object, and understand the distinctions between them, in particular, whichmessages to send to which object.This pattern is called Curried Object because the underlying mechanism is partial function applica-tion, colloquially known as currying after the mathematician Haskell B. Curry [12]. The name CurriedObject also suggests that this pattern is a little spicy and exotic, and probably not for the beginner.Known UsesIterators are the most common kind of Curried Object, as they are used in many common languagesand class libraries [9, 10, 6]. An iterator's server is a collection object, and the iterator maintains aslowly varying index into the collection. Many graphics systems use Curried Objects whose serversare views, as in the example above. For example, VisualWorks uses GraphicsContext objects [17] andSmalltalk/V uses Pen objects [15]. VisualWorks also includes MessageSend objects, a curried version ofthe Message Arguments Object (1). MessageSend inherits from Message, and adds an extra variableto store the message's receiver, allowing a message to sent without an explicit reference to the ultimatereceiver object.Related PatternsArguments Object (1) can provide a less radical alternative to Curried Object. The originalserver can act as an Abstract Factory [9] to create the Curried Object. A Curried Object can besimilar to an object-level Adaptor [9], but where an adaptor allows an object to conform to an existingprotocol, a Curried Object introduces a new, simpler protocol. The Accumulator [23] pattern isa variant of Curried Object which simpli�es the protocol used to create objects. The Type-SafeSession pattern is a Curried Object which emphasises type saftey [20].Patterns about ResultsMany messages ask questions of the objects to which they are sent, and the results of these messagesare the answers to these questions. The following three patterns describe how objects can simplify theasking and answering of questions. 8

4 Result ObjectHow can you store and manage a di�cult answer to a di�cult question?You have a long or important computation performed by a server object, and you wish to retainthe results of the computation. Perhaps the computation returns more than one object, or the resultis needed at several times or places throughout the program, or you need to keep information abouthow the result was obtained. For example, consider a MetricCalculator for a programming environmentthat calculates software metrics for a system under development. Calculating the metrics is a longcomputation and needs to return values for a number of di�erent metrics. The programming environmentneeds to keep the values for the di�erent metrics together, and to store the values to track the evolutionof the system over time.The client object could cache the results itself, but this increases the client's complexity, as theresulting caching code will obscure the main application logic, making it di�cult to read and modify.Alternatively, the server object could cache and store the results, but this has similar problems, in thatthe caching code pollutes the implementation of the domain computation. This also complicates theserver's protocol, since it must return both previous and current results.Therefore: Make a Result Object the whole answer to the question.Make one variable in theResult Object for each value to be returned, and provide the usual accessorand initialisation messages | if additional information about the result is required, store this in theResult Object also. Provide the usual accessor messages so that this information can be retrievedfrom the Result Object. Modify the server to create and return a Result Object, and the server'sclients to retrieve the results from the Result Object.ExampleConsider a MetricCalculator object for calculating software metrics:m := MetricCalculator for: anObject.m computeSizeOfInterface.m computeNumberOfInheritedMethods.m computeNumberOfOverriddenMethods.
Client MetricCalculator

computeSizeOfInterface

computeNumberOfInheritedMethods

computeNumberOfOverriddenMethods

The various computemessages traverse the target object's inheritance hierarchy and compute metrics.The hierarchy is traversed whenever an individual metric is required, and repeated if the metric is neededagain. Since each metric requires exactly the same traversal of the inheritance hierarchy, this is reallya single computation returning multiple results | the various di�erent metrics.This protocol can be improved by introducing a Result Object. All the metrics can be calculatedin one traversal, and a Result Object (called a MetricReport) returned. Individual metric values canbe retrieved from the MetricReport. The MetricReport object can also store ancillary information about9

the metric calculation, such as the date the metrics were calculated. Using a MetricReport, the aboveexample becomes:metricReport := (MetricCalculator for: anObject) computeMetrics.metricReport sizeOfInterface.metricReport numberOfInheritedMethods.metricReport numberOfOverriddenMethods.
Client MetricReport MetricCalculator

computeMetrics

new

sizeOfInterface

numberOfInheritedMethods

numberOfOverriddenMethods

ConsequencesA Result Object is quite like a Curried Object (3) and shares many of the bene�ts and liabilities ofthat pattern, except that a Curried Object (3) substitutes for a message's receiver, while a ResultObject substitutes for a message's result. A Result Object trades the server's protocol size for extraobjects | M messages to the server are replaced by 1 message to return a Result Object plus Mmessages to retrieve the result values | the resulting protocols are usually easier to learn and to read,and with reduced coupling, are easier to change. Result Object is particularly powerful when the newResult Object corresponds to a concept from the domain. But: for the client object programmer,Result Objects are more di�cult to use than server-side caching, because the client needs to extractthe actual results from the Result Object. For the server object programmer, they similarly requiremore work than client-side caching.Known UsesThe VisualWorks Date class returns a Result Object (called TimeStamp) to package together thecurrent date and time. As well as simplifying client code, this also avoids the problems which wouldoccur if the time was returned at one second before midnight, and the date one second afterwards. MartinFowler discusses similar Result Objects called TimePoints [8]. An expert system used in Telecomscapacity planning used a Result Object to package the decisions it returned with the logic supportingthe decisions. The system's users could check the supporting logic to verify that the decisions werebeing made appropriately. The Self Programmer's Reference Manual describes how Result Objectscan be used in Self to return multiple values from messages [1].Result Objects are often used to provide error handling (resulting in Error Objects). Represent-ing errors with Result Objects allows the errors to be queued as they occur, and displayed later to theuser. These Result Objects can also provide textual descriptions of the errors, and appropriate helpinformation. For example, VisualWorks includes SystemError objects, Result Objects which packagetogether return codes and identifying arguments from errors occurring outside the system [17].10

Related PatternsIf the question can be answered in parallel, try Future Object (5). If the question can be answeredeasily now, but the answer may never be needed, try Lazy Object (6).5 Future ObjectHow can you answer a question while you think about something else?Sometimes you need to ask a question, then do something else while waiting for the answer toarrive. For example, a programming environment may need to respond to its user interface while aMetricCalculator computes the metrics for the latest release. In these cases, the computation's resultmust be returned to the program eventually, but it is not needed immediately. If the computation canbe performed independently from the rest of the program | that is, if the computation does not modifyobjects which the rest of the program depends upon, and vice versa | it should be possible to computethe result in a parallel thread.Unfortunately, managing parallel threads is quite di�cult in practice. Because the computation'sresult is eventually required by the program, the thread cannot be started in parallel and left to itsown devices. Rather, the result must be returned to the program when the computation �nishes. Ifthe server starts the parallel computation, then either the server or the computation's clients mustextract the result from the thread. This will increase the complexity of the object chosen to have thisresponsibility, and reduces cohesion by contaminating it with process management issues. In practice,programmers often adopt the simplest solution, ignoring the issue and computing the result immedi-ately, delaying the program's execution until the computation is complete, consequently reducing theprogram's responsiveness and performance.Therefore: Make a Future Object which computes the answer in parallel.A Future Object is a Result Object (4) which computes an answer in a parallel thread, basedon initial information supplied by the original server [11]. The Future Object should receive thecomputation's arguments from the server, and then cache any information which may change after themain computation resumes. The Future Object should handle the thread management | creating anew thread to perform the computation, and extracting the results when the thread completes. TheFuture Object should also provide synchronisation | clients which access the Future Object whileits associated thread is running should be blocked until the thread completes.The Future Object can also be used to control the thread performing the computation. Thiscontrol can be direct | the Future Object can provide an interface to control the thread, or indirect| if the Future Object is deleted before its computation completes, the unneeded computation canalso be deleted.ExampleConsider the metricReport example from the Result Object (4) pattern. A Future Object couldimplement the metricReport with exactly the same interface, but with a di�erent performance pro�le.Using a Result Object, the program will wait while the computation is performed. Using a FutureObject, the computation will be performed in a parallel thread (started by the computeMetricsmessage),and the program will wait for this thread when it accesses the metricReport Future Object | in thediagram, when the sizeOfInterface message is sent. If the creation of the Future Object and its �rstaccess are su�ciently separated, the metrics computation will not delay the main thread.ConsequencesA Future Object protocol is exactly the same as a Result Object (4), and so has similar bene�tsof increased readability and decoupling, and decreased complexity. In addition, a Future Object sep-arates concurrency issues from clients' and servers' domain code, so the implementation of concurrencyis easier to change. But: because a Future Object must manage the concurrency, it will have a largeroverhead than a standard Result Object. A Future Object will also be more di�cult to write than a11

Client MetricReport MetricCalculator

computeMetrics

new

sizeOfInterface

numberOfInheritedMethods

numberOfOverriddenMethods

Result Object, although some languages are su�ciently
exible that a single generic Future Objectcan be written once and reused as necessary [7]. A Future Object cannot avoid the intrinsic problemsimposed by concurrency: the program's performance will become less predictable, and harder to debug.Also, this pattern should be applied only when the parallel computation is independent of the rest ofthe program.Known UsesFuture Objects are quite common in parallel and distributed computing. They were introduced inMultilisp [11] and have been used in Smalltalk [7] and Mushroom [13] amongst many other systems.Related PatternsA Future Object can be seen as a Proxy [9] for an object which hasn't been computed yet.6 Lazy ObjectHow can you answer a question that is easy to answer now, but that may never be asked?Some computations can best be performed immediately but the computation's result may never beneeded. For example, the data needed by the MetricCalculator may only be accessible for the currentversion of the software being developed, but it is unlikely that the user would want metrics calculated forevery intermediate version. Often this kind of computation depends on information which is availablenow, but may not be available in the future.The simplest solution to this problem is for the client to ask the question every time, and then storethe results until they are needed. If most of the results are not needed, this will cause a large amount ofunneeded computation, and also complicate the client's code, making it harder to write. Alternatively,the server object answering the question could compute and cache all the results, with a similar problemsof e�ciency and increased server complexity. The client could postpone asking the question until theanswer is required, but, when the question is asked, the information the answer depends upon may belost.Therefore: Make a Lazy Object which can answer the question later, if necessary.A Lazy Object is a Result Object (4) which does not start its computation until the answer isrequested. The laziness is managed within the Lazy Object, rather than by the clients or server. Aserver object can initialise and return a Lazy Object in exactly the same way it would return a ResultObject. The server should pass the computation's arguments to the Lazy Object, which should alsocache any information which may change between the time it is created and the time it is used. Whenit is accessed, the Lazy Object cannot return the result of the computation, because the computation12

has not yet been carried out. Rather, the �rst time the Lazy Object is used, it should perform thecomputation and cache the results. Future requests can be serviced from the cache.ExampleConsider again the metrics calculator example from Result Object (4). A Lazy Object could beused as the metricReport, changing the performance characteristics but not the interface. Using a LazyObject, the metrics computation will be performed when the �rst metric is requested | in the example,when the sizeOfInterface message is sent. If the result is never needed, the Lazy Object can be deletedor garbage collected, and the metrics will never be calculated.
Client MetricReport MetricCalculator

computeMetrics

new

sizeOfInterface

numberOfInheritedMethods

numberOfOverriddenMethods

ConsequencesA Lazy Object is a re�nement of a Result Object, and shares the bene�ts and liabilities of thatpattern. In addition, a Lazy Object avoids the overhead of unnecessary computations by calculatingonly results that are actually required. Since a Lazy Object's own protocol is exactly the same as thatof a corresponding Result Object, the choice to use (or not use) lazy evaluation can be completelyencapsulated from any client objects. Similarly, because the Lazy Object manages the evaluationitself, the server is mostly insulated from the details of the laziness. But: these gains in e�ciencymust be traded o� against the need to identify and cache information which the computation dependsupon and which might be changed by the rest of the program, and to ensure the computation (wheneventually performed) does not itself have side e�ects on the rest of the program. A Lazy Object maymake program performance di�cult to predict, and the program di�cult to debug, because it is noteasy to determine when (or if) the calculation is actually carried out.The Result Object (4), Future Object (5), and Lazy Object (6) patterns are distinguishedby when the computation is started, and when the result is returned to the main thread. A ResultObject starts the computation and returns the result as soon as it is created, a Future Object startsa computation as soon as it is created, but returns the result when it is �rst accessed, and a LazyObject both starts the computation and returns the result when it is �rst accessed.Known UsesThemushroom system implements a generic Lazy Object [13]. The LOOM virtual memory system forSmalltalk used Lazy Objects called leaves to represent objects which were swapped out into secondarystorage [14]. Design Patterns describes how ET++ uses Lazy Objects called virtual proxies to representlarge images which may not need to be displayed [9].Related PatternsKen Auer and Kent Beck have described many similar patterns for optimising Smalltalk programs [2].13

AcknowledgementsThese patterns are revised versions of some patterns from the Found Objects pattern language [16], andwere inspired by discussions on the patterns-discussion mailing list and theWikiWikiWeb. In particular,Kent Beck described Parameters Object [4] and suggested Result Object [3]. Patrick Logan noticed thesimilarity between these two patterns, David C. Laurence provided the Telecoms example for ResultObject and Mike Koss described the use of Result Objects to handle errors.Authors and reviewers at the EuroPLOP'96 writers workshop provided many pertinent commentsand suggestions. Lorraine Body, Linda Rising, and Charles Weir provided detailed comments on theconference draft, as did David Holmes back at MRI and a number of anonymous reviewers. ShepherdsWard Cunningham and Paul Dyson provided many important suggestions regarding the paper's formand content.References[1] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs H�olzle, John Maloney, Randall B. Smith,David Ungar, and Mario Wolczko. The Self Programmer's Reference Manual. Sun Microsystems andStanford University, 4.0 edition, 1995.[2] Ken Auer and Kent Beck. Lazy optimization: Patterns for e�cient smalltalk programming. In PatternLanguages of Program Design, volume 2. Addison-Wesley, 1996.[3] Kent Beck. Result object. http://c2.com/cgi/wiki?ResultObject.[4] Kent Beck. Parameters object. Email message sent to the patterns-digest list, March 1995.[5] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1996.[6] Grady Booch. Object Oriented Analysis and Design with Applications. Benjamin Cummings, second edition,1994.[7] Brian Foote and Ralph E. Johnston. Re
ective facilities in Smalltalk-80. In OOPSLA Proceedings, 1989.[8] Martin Fowler. Analysis Patterns. Addison-Wesley, 1997.[9] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. Addison-Wesley,1994.[10] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-Wesley,1983.[11] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transactionson Programming Languages and Systems, 7(4):501{538, October 1985.[12] Martin C. Henson. Elements of Functional Programming Languages. Blackwell Scienti�c, 1987.[13] Trevor P. Hopkins and Mario Wolczko. Writing concurrent object-oriented programs using Smalltalk-80.The Computer Journal, 32(4), October 1989.[14] Ted Kaehler and Glenn Krasner. LOOM{large object-oriented memory for Smalltalk-80 systems. In GlennKrasner, editor, Smalltalk-80: Bits of History, Words of Advice, chapter 14. aw, 1983.[15] Wilf Lalonde. Discovering Smalltalk. Benjamin/Cummings, 1994.[16] James Noble. Found objects, 1996. Reviewed at EuroPLOP.[17] ParcPlace Systems. VisualWorks Smalltalk User's Guide, 2.0 edition, 1994.[18] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular structure of complex systems.IEEE Transactions on Software Engineering, 11(3), March 1985.[19] Alan Perlis. Epigrams on programming. ACM SIGPLAN Notices, 17(9), September 1982.[20] Nat Pryce. Type-safe session. In EuroPLOP'97 Proceedings, 1997.[21] Robert W. Schei
er and Jim Gettys. The X Window System. ACM Transactions on Graphics, 5(2), April1986.[22] Kurt Schmucker. MacApp: an application framework. Byte, 11(8), 1986.[23] Phillip M. Yelland. Creating host compliance in a portable framework: A study in the use of existing designpatterns. In OOPSLA Proceedings, 1996.[24] Walter Zimmer. Relationships between design patterns. In Pattern Languages of Program Design. Addison-Wesley, 1994. 14

