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Abstract—In this paper, we present design, implementation
and evaluation of a novel predictive control framework to enable
reliable distributed stream data processing, which features a
Deep Recurrent Neural Network (DRNN) model for perfor-
mance prediction, and dynamic grouping for flexible control.
Specifically, we present a novel DRNN model, which makes
accurate performance prediction with careful consideration for
interference of co-located worker processes, according to multi-
level runtime statistics. Moreover, we design a new grouping
method, dynamic grouping, which can distribute/re-distribute
data tuples to downstream tasks according to any given split ratio
on the fly. So it can be used to re-direct data tuples to bypass
misbehaving workers. We implemented the proposed framework
based on a widely used Distributed Stream Data Processing
System (DSDPS), Storm. For validation and performance eval-
uation, we developed two representative stream data processing
applications: Windowed URL Count and Continuous Queries.
Extensive experimental results show: 1) The proposed DRNN
model outperforms widely used baseline solutions, ARIMA and
SVR, in terms of prediction accuracy; 2) dynamic grouping works
as expected; and 3) the proposed framework enhances reliability
by offering minor performance degradation with misbehaving
workers.

Index Terms—Deep Learning, Recurrent Neural Network,
Distributed Stream Data Processing, Storm, Prediction.

I. INTRODUCTION

A Distributed Steam Data Processing System (DSDPS) han-

dles unbounded streams of data tuples with many (physical or

virtual) machines and worker processes (simply called workers

in the following) in a distributed manner. Reliability and fault

tolerance are critical for Distributed Stream Data Processing

(DSDP). Currently, most DSDPSs (such as Storm [7]) handle

anomalies or failures in a reactive manner. Specifically, they

track acknowledgment of each tuple to detect failed tuples and

re-process the associated source tuples or recover processing

from the checkpoints to fulfill the at-least-once processing

guarantee; moreover, workload on misbehaving or failed work-

ers will be rescheduled and then related tuple failures will

be re-processed accordingly. However, this simple reactive

approach is not suitable for those Stream Data Processing

(SDP) applications that demand data tuples to be processed

in real or near real time due to the following reasons: 1) Data
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processing and worker problems are commonly detected by

a timeout mechanism (e.g., 30s for tuple failure detection in

Storm), which may significantly slow down data processing. 2)

As observed in the previous work [42], rescheduling at runtime

introduces a large number of failed tuples and longer tuple

processing time. Hence, we propose a predictive approach to

enhance reliability for DSDPSs by predicting performance of

workers and re-directing data tuples to bypass those whose

performance deviates from the expected, which we call misbe-
having workers in the following. In this way, after a failure, a

DSDPS only experiences very minor performance degradation,

specifically, a minor increase on average tuple processing

time and a small number of failed tuples, which have been

confirmed by our experimental results (Section IV).

Accurate performance prediction is obviously the key to the

success of a predictive approach. Here, we need to deal with

high-dimensional time series data, which are basically runtime

statistics of workers and machines. Time series prediction for

a target is usually done based only on its own historical data.

However, this may not work well in a DSDPS, in which a

worker may share a common machine with many other work-

ers, and those co-located workers may cause interference and

affect its performance due to resource competitions. To im-

prove prediction accuracy, such co-location interference needs

to be well addressed. Recurrent Neural Networks (RNN),

especially gated RNNs, have been reported to deliver the state

of the art performance on a few sequence learning tasks (such

as speech recognition [15] and text generation [16]). In this

paper, we, for the first time, leverage Deep Recurrent Neural

Networks (DRNNs) for performance modeling in DSDPSs,

with consideration for co-location interference.

In additions, quick and effective actions need to be taken

to minimize performance degradation that may be caused by

misbehaving workers. In case of a failure, most DSDPSs re-

schedule/re-assign tasks for recovery, which may lead to no-

ticeable or even serious performance degradation [42] because

it may take a few seconds to several minutes for a new task

assignment to be deployed and may cause tuple failures during

new deployment. This may counteract benefits brought by

accurate prediction. We aim to come up with a quick, effective

and smooth control mechanism that can prevent system perfor-

mance from being affected by misbehaving workers or failures.

We achieve this goal by using a quite different approach, i.e.,

designing a new grouping mechanism, to re-distribute and re-

route tuples if a failure is predicted to occur.

In this paper, we present a novel predictive control frame-

work to enable reliable DSDP. Specifically, we make the

following contributions:
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• For prediction, we develop a novel DRNN-based

interference-aware model to accurately predict perfor-

mance of workers, which takes into account co-location

interference.

• For control, we design and implement a new group-

ing method, dynamic grouping, which can distribute/re-

distribute data tuples to downstream tasks according to

any given split ratio on the fly. So it can be used to re-

direct data tuples to bypass misbehaving workers.

• We implemented the proposed framework based on a

widely-used DSDPS, Apache Storm [7], and validated

and evaluated its performance with two representative

SDP applications: Windowed URL Count and Continuous

Queries.

• Extensive experimental results well justify accuracy of

the proposed prediction model, demonstrate that dynamic

grouping works as expected and show the proposed

framework enhances reliability by offering minor perfor-

mance degradation with misbehaving workers.

Note that we implemented and evaluated the proposed

framework based on Storm. However, our design, especially

the proposed DRNN model and dynamic grouping method,

are quite general, which can be applied to other DSDPSs

that has a similar programming model and architecture with

minor modifications. More importantly, the proposed DRNN

model can be used independently for time series analysis and

prediction; and the proposed dynamic grouping method can

also be used to serve other purposes, such as load balancing

and power-efficient resource allocation.

II. DISTRIBUTED STREAM DATA PROCESSING AND STORM

In a DSDPS, a stream is basically an unbounded sequence

of tuples. A data source (known as spout in Storm) reads

data from external source(s) and emits streams. A Processing

Unit (PU, known as bolt in Storm) consumes tuples from data

sources or other PUs, and processes them using code provided

by a user. It can either store data to a database, or pass it to

other PUs for further processing. An application is usually

modeled as a directed graph (known as topology in Storm), in

which each vertex corresponds to a data source or a PU, and

direct edges indicate how data streams are routed. A task is an

instance of a data source or PU, and each data source or PU

can be executed as many parallel tasks on multiple machines.

A DSDPS usually uses two levels of abstractions (logical

and physical) to express parallelism. In the physical layer,

it usually includes a master (known as Nimbus in Storm)

that serves as the central control responsible for distributing

user code around the cluster, scheduling tasks, and monitoring

them for failures, and a set of virtual or physical machines

that actually process incoming data. An application graph

(topology) is executed on multiple worker processes (called

workers in Storm) running on one or multiple machines. Slots

are configured on each machine. The number of slots indicates

the number of workers that can be run on this machine, and

is usually pre-configured by the cluster operator based on

hardware constraints such as the number of CPU cores. Each

worker uses multiple threads (known as executors in Storm)

to actually process data using user code. Each machine runs

a daemon called supervisor that listens for any work assigned

to it by the master.
A DSDPS usually supports 5 ways for grouping, which

define how to distribute tuples among tasks: 1) Shuffle group-

ing: Tuples are randomly distributed across the downstream

PU’s tasks and each task is guaranteed to receive an equal

number of tuples. 2) Fields grouping: A field of a tuple is

used as the key to partition the stream. Tuples with the same

key will be mapped to the same task. 3) All grouping: Each

tuple is broadcasted to all tasks of the downstream PU. 4)

Global grouping: The entire stream is distributed to one of

the downstream PU’s tasks, usually the task with the lowest

ID. 5) Direct grouping: The producer of the stream decides

which task of the downstream PU will receive each tuple.
Apache Storm [7] is an open-source DSDPS, which has

a architecture and programming model very similar to what

described above. Storm uses ZooKeeper [9] as a coordination

service to maintain it’s own mutable configuration (such as

task schedule), naming, and distributed synchronization among

machines. Note that all configurations stored in ZooKeeper are

organized in a tree structure. Nimbus (i.e., master) provides

interfaces to fetch or update Storm’s mutable configurations.

Nimbus, or each supervisor/worker in Storm is a Java Virtual

Machine(JVM). A Storm topology contains a topology specific

configuration, which is loaded before the topology starts and

does not change during runtime. Each Storm executor has a

grouper, which distributes tuples according to the installed

grouping configuration.
To ensure reliability, when the message ID of a tuple

coming out of a data source successfully traverses the whole

topology, a special acker is called to inform the originating

data source that message processing is complete. If a message

ID is marked failure due to acknowledgment timeout, data

processing will be recovered by replaying the corresponding

data source tuple. Nimbus monitors heartbeat signals from

all workers. It reschedules workers only when it discovers a

failure.

III. DESIGN AND IMPLEMENTATION OF THE PROPOSED

FRAMEWORK

A. Overview
We illustrate the proposed framework in Figure 1, which can

be viewed to have three planes: SDP with Dynamic Grouping,

Data Collection and Predictive Control. It consists of the

following components, whose functionalities are summarized

as follows:

1) Dynamic Grouping (Section III-C): It allows an appli-

cation to change how data tuples are distributed among

tasks on the fly according to a given grouping configura-

tion. This is implemented and embedded in the original

DSDPS.

2) Monitor (Section III-D): It collects runtime statistics of

workers and machines (such as CPU usages, workload,

etc), and reports them to the controller.

3) Hook (Section III-D): It collects DSDP-specific runtime

statistics (such as tuple execution time, tuple queueing

time, etc), and send them to the co-located monitor.
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Fig. 1: The proposed predictive control framework

4) Controller: It obtains runtime data from all the monitors

and coordinates activities of the trainer, predictor and

group manager.

5) Trainer: It pre-processes collected data and trains the

proposed DRNN model (Section III-B).

6) Predictor: It makes performance prediction based on

runtime data using the trained DRNN model (Section

III-B).

7) Grouping Manager: It calculates a grouping configuration

(Section III-C) based on prediction results and sends it

to the master.

The workflow of the proposed framework is described in

the following:

1) The hooks and monitors periodically collect runtime

statistics of workers and machines, and send them to the

controller.

2) The controller stores runtime data from monitors to the

SQLite [36] database, calls the predictor for prediction,

and invokes trainer to update the DRNN model periodi-

cally.

3) The predictor makes performance prediction based on

runtime data using the trained DRNN model and reports

the results to the controller.

4) The controller calls the grouping manager to calculate

a grouping configuration based on prediction results and

send it to the master.

5) The master then uses the new grouping configuration

along with dynamic grouping to re-direct data tuples to

bypass misbehaving workers and/or machines.

Note that the proposed framework is general and flexible

enough such that any control policy can be applied here. For

example, a simple and conservative control policy could be:

If the prediction error of a target feature of a worker exceeds

a given threshold, stop sending tuples to the machine hosting

that worker for a certain amount of time. How to find the best

control policy and how to determine the best split ratio are

application dependent and are out of scope of this paper since

we aim to design a general predictive control framework here.

But we will show that how the proposed framework along with

the simple policy described above can improve reliability using

experimental results in Section IV-C.

In summary, the proposed framework has the following

desirable features:

1) Interference-aware Performance Prediction with a novel
DRNN Model (Section III-B): It makes accurate per-

formance prediction with careful consideration for co-

location interference using a two-tiered DRNN model.

2) Flexible Control with Dynamic Grouping for Enhanced
Reliability (Section III-C): It employs a new group-

ing method, dynamic grouping, which can distribute/re-

distribute data tuples to downstream tasks according to

any given split ratio and can re-direct data tuples to

bypass misbehaving workers and/or machines according

to prediction.

3) Multi-level Data Collection (Section III-D): It collects

both process and machine level runtime statistics with

over 70 features to enable accurate prediction.

B. Interference-aware DRNN Model for Prediction

In most DSDPSs, multiple workers may run on a common

virtual or physical machine, and multiple tasks are assigned to

these workers. Runtime statistics collected from these tasks,

workers and machines are basically time series data. We

consider a computer cluster (hosting the DSDPS) with N
machines, and on each machine, there are at most K workers.

The values of the Mm features (See Section III-D) of machine

j at timeslot t is given by a vector vt
j ; and the values of

the Mw features of worker i on machine j at timeslot t
is given by a vector xt

ij . Note that these feature values are

min-max normalized. Specifically, DSDPS specific features

(Section III-D) are normalized based on all samples from each

worker, while others are normalized based on all samples from

each machine. In addition, we denote the prediction result of

worker i on machine j at timeslot t as yt
ij , which may include

multiple features.

Our problem here is to make one step ahead prediction for

values of a set of important features (such as CPU usage) of

every worker i on machine j, given runtime data at worker

and machine levels from machine j in the past T time slots.

There are a few approaches for modeling and prediction

with time series data. We choose an RNN, particularly a

gated RNN, as the starting point for our design due to the

following reasons: 1) As regular feedforward neural networks,

RNNs can be used to accommodate high-dimensional data

and can be stacked together to form a deep model to handle

complicated non-linear cases. 2) Gated RNNs, such as Long

Short-Term Memory (LSTM) [18] and Gated Recurrent Unit

(GRU) [13], use gates to control how to update hidden states,

which have been shown to be effective on modeling long-term

dependencies. 3) Gated RNNs have been successfully applied
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in time series modeling and have been shown to offer record-

setting performance for complicated problems such as speech

recognition [15] and text generation [16].

As mentioned above, time series prediction for a target is

usually done based only on its own historical data. However,

this may not work well in a complicated DSDPS since the

performance of a worker may be affected by co-located

workers due to resource competitions. To tackle this time

series prediction problem with consideration for co-location

interference, we can feed runtime data of all co-located work-

ers and the corresponding machine to an RNN when predicting

performance of a worker.

As shown in Figure 2, we start with a gated DRNN

constructed by stacking 2 layers of GRUs [31] and a sigmoid

output layer, and feed all data related to co-located workers

and the corresponding machine to it.

Fig. 2: A DRNN model with GRUs for machine j(unfold

through time)

GRU is one of the most widely used RNN extensions. It

uses gates to control the flow of past information and current

input and specify how much past information should be let

through. GRU (in layer 1) works according to the following

equations (GRU in layer 2 works very similarly):

rt1j = σ(W1rX
t
j
′
+ U1rh

t−1
1j ); (1)

ct1j = tanh(W1cX
t
j
′
+ U1c(rt � ht−1

1j )); (2)

zt1j = σ(W1zX
t
j
′
+ U1zh

t−1
1j ); (3)

ht
1j = (1− zt1j)� ht−1

1j + zt1j � ct1j . (4)

In these equations, σ(·) is the sigmoid function, tanh(·)
is the hyperbolic tangent function, and � is element-wise

multiplication. Generally, W and U are the weight matrices,

e.g. W1r is the weight matrix for the reset gate. Xt
j =[

vtjxt
1j · · ·xt

Kj

]
is a row vector including the input feature

values of both machine j and its workers. The GRU keeps

track of temporal dependencies by removing and adding

information to the previous value using the reset gate and

update gate. Every box in Figure 2 represents a GRU. In this

model, for the lth layer GRU, the output ht
1j given data from

time t on machine j (i.e. Xt
j) is calculated as follows:

1) Calculate the reset gate rt1j (Equation (1)) given all input

from the lower layer and previous output ht−1
1j . This

controls how much previous information will be forgotten

while calculating the new input candidate ct1j .

2) Calculate ct1j (Equation (2)) using the hyperbolic tangent

function with new input and the previous output gated by

rt1j .

3) Compute the update gate zt1j (Equation (3)) similar as the

reset gate. This gate controls the information flow from

previous time step to the final output and helps the GRU

memorize long-term information.

4) Compute the output ht
1j with previous unit output ht−1

1j

and new output candidate ct1j weighted by zt1j (Equa-

tion (4)).

The above flat DRNN model captures co-location interfer-

ence by weighting data from co-located workers equally, i.e.,

Xt
j , without differentiating their impacts to the prediction,

which may not be effective. When we try to predict perfor-

mance of a worker i on machine j, its own target feature

data should play a big role on the prediction result. In order

to address co-location interference, and in the meanwhile,

emphasize the impact of historical data related to the target

worker and the target feature, we come up with a novel two-

tiered Interference-aware DRNN (I-DRNN) model, which is

shown in Figure 3.

In this model, we harness the power of representation

learning [11] to address co-location interference. Specifically,

the DRNN in tier 2 uses the output of the DRNN in tier 1

as input for performance prediction, which corresponds to a

representation of co-location interference. It is trained with

data of all co-located workers and the corresponding machine.

So the input of the DRNN in tier 2 consists of two parts: 1)

The above representation of co-location interference; and 2)

the target feature (such as CPU usage) of the target worker.

This model well reflects the importance of the target worker’s

own data on the target feature.

In addition, we introduce weight sharing among multiple (up

to K) tier-2 networks. Weight sharing has been successfully

applied to convolutional neural networks and image process-

ing [24]. We use it in our model due to following reasons:

1) With weight sharing, more data (i.e., data from up to K
workers) can be used to train the DRNN in tier 2, compared

to the case without weight sharing. This usually leads to a

better model. 2) Weight sharing reduces the total number of

parameters and the training time.

Due to the parameter sharing and relatively shallow (4 layers

in total) network structure, online inference can be done in

real time (only about 5ms). Intuitively, the deeper the model,

the more the amount of the RNN memorization, the higher
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Tier 1

Tier 2

Fig. 3: The proposed Interference-aware DRNN (I-DRNN) for

2 co-located workers

the prediction accuracy, but the longer the inference delay.

During our tests, we found that further increasing the number

of layers increased the inference delay but brought very minor

or even no gain on prediction accuracy. This may because the

spatial and temporal correlations hidden in this scenarios are

not as complicated or strong as those in video data, thus a very

deep model is not necessary. We made similar observations

and conclusions in our recent work on user interest data

analysis [26]. Therefore, we used a 2-layer GRU network for

each tier of the proposed model. Another important hyper-

parameter is the number of neurons of the output of Tier 1.

We set it to three to make it consistent with the dimension of

the output of Tier 2 (even they do not have to be the same)

in our implementation. We tired different settings in our tests

but found it insensitive to prediction accuracy.

C. Dynamic Grouping

To enable predictive control in a DSDPS, a method is

needed to dynamically re-distribute tuples according to predic-

tion on the fly to bypass those misbehaving workers/machines.

In this section, we present design and implementation of

a new grouping method, dynamic grouping, to fulfill this

need. Note that our design is general, which may be used

in any DSDPS that allows custom grouping methods; while

our implementation is based on Storm.

1) Design: Shuffle grouping introduced above can be seen

as a way of randomly assigning tuples to downstream tasks,

Fig. 4: Consistent hashing for dynamic grouping

which achieves an even distribution of tuples. In the proposed

framework, we design a new grouping method, dynamic
grouping, based on consistent hashing. With dynamic group-

ing, tuples can be dispatched to downstream tasks with any

given split ratio, which enables flexible control on workload

distribution in a DSDPS.

Consistent hashing [22] is a technique that can provide

flexible tuple-task assignments. To use consistent hashing here,

we first assign each downstream task one or more identifiers

selected from an identifier circle with a modulo of 2m. Each

tuple d has its own ID kd and a modulo operation will be

performed to obtain a new ID if it is larger than 2m − 1. The

tuple will be sent to the task corresponding to the first assigned

identifier on the circle (starting from its own ID and going

clockwise). In this way, the tuple distribution over downstream

tasks can be controlled by changing the assignment of task

identifiers.

In the example shown by Figure 4, we have an identifier

circle with m = 3, i.e., a total of 8 possible identifiers; and

3 downstream tasks. We assign identifiers 3, 7 to task A; 0,

4, 6 to task B and 5 to task C. In the following, we call such

an identifier-task assignment a grouping configuration. When

a tuple (with an ID of 1) arrives, it will be dispatched to task

A. Because identifiers 1 and 2 are unassigned, and the first

assigned identifier it meets is then 3. As mentioned above,

identifer 3 is assigned to task A. Here, we can achieve a split

ratio of 4:3:1 because identifiers 1 and 2 are unassigned, and

tuples with an ID of 1 or 2 (after the modulo operation if

needed) will be dispatched to task A too.

Note that consistent hashing may not be a unique solution

to this problem. We made this design choice also because

it is easy to implement and change the configuration. For

example, to disable a downstream task, we can simply assign

the identifier range corresponding to this task to other tasks,

and then a tuple that goes to any remaining task previously will

still be sent to the same task as before. Moreover, consistent

hashing can be easily used to realize shuffle grouping by

assigning identifiers to downstream tasks randomly with an

equal probability.

2) Implementation in Storm: It is not trivial to implement

dynamic grouping in Storm because unlike other grouping

methods, it needs to be updated at runtime to enable predic-

tive control. As mentioned above, Storm’s topology specific

configuration is loaded before a topology starts and does not

change during runtime. However, to enable dynamic grouping
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in Storm, we come up with a mutable configuration, Topol-
ogy Specific Dynamic Configuration (TSDC), which can be

changed during runtime. Each topology has a TSDC, which

specifies the identifier-task assignment (described in the last

section) for every bolt-bolt or spout-bolt pair.

We implement dynamic grouping as a custom grouping

policy in Storm. We store all TSDCs in ZooKeeper and

monitors if there is any change with the ZooKeeper watcher.

It is natural to store and manage all TSDCs in ZooKeeper

because Storm stores all its configurations in ZooKeeper, and

doing so can ensure Storm’s deployment procedure remains

untouched. Specifically, to manage TSDCs in ZooKeeper, we

made following modifications to Storm:

• Add a TSDC map to the topology class.

• Add an interface DynamicConfigurable, which contains a

callback method void processUpdate(String) for handling

the notification of a TSDC update, a method

void initDynamicConfig(String) for initialization, and a

method String getConfigPath() for obtaining configura-

tion ID, which is used to differentiate multiple TSDCs.

• Create a subtree for storing TSDCs in ZooKeeper.

• Set up ZooKeeper watchers for notifications of TSDC up-

dates in getConfigPath(). processUpdate(String) is called

when a watcher is triggered.

• Add an interface on Nimbus to manage TSDCs.

Next, we give an example to demonstrate how a Storm

user can use dynamic grouping for his/her topology. In this

example, we show how to define an identity bolt with 3
tasks, which receive tuples from source component using

dynamic grouping, and how to initialize a dynamic grouping

configuration using a TSDC. Here, we assign 20 identifiers

for each of three tasks of the identity bolt.

b u i l d e r . s e t B o l t ( ” i d e n t i t y ” , i d e n t i t y B o l t , 3 )
. cus tomGrouping ( ” s o u r c e ” ,

new DynamicGrouping ( ” i d e n t i t y ” ) ) ;
. . .
b u i l d e r . s e tDynamicConf ig ( ” i d e n t i t y ” ,

DynamicGrouping . i n i t S h a r d s ( 3 , 2 0 ) ) ;

At runtime, Storm stores the initial configuration as a TSDC

in ZooKeeper when a topology using dynamic grouping is sub-

mitted. All the corresponding groupers fetch the TSDC from

ZooKeeper. Once Nimbus receives a new grouping configura-

tion, it updates the corresponding TSDC in ZooKeeper, which

triggers ZooKeeper watchers in the corresponding workers.

ZooKeeper watchers notify groupers to use the new configu-

ration, which will re-distribute data tuples to downstream tasks

accordingly.

D. Multi-level Data Collection

A multi-level data collector is designed to collect runtime

statics at both worker and machine levels.

We embed a hook (that runs as a thread) in each worker to

collect information related to DSDPS specific features. In our

implementation, the hook collects readings of the features in

Table I from each worker every 5s. In Storm, when a tuple

arrivals at a worker, it is first queued based on the downstream

executor, so we monitor the queuing time for inbound tuples.

Group Features(Unit)

DSDPS

Average tuple execution time(ms), number of inbound tu-
ples per second, average inbound tuple queuing time(ms),
average outbound tuple batch sending time(ms), number
of outbound tuple batches per second

JVM Heap/non-heap memory usage(KB), process ID

TABLE I: Features collected by a hook

Then each executor executes user code to process tuples from

its own queue one by one. We collect the execution time for

each tuple. For emitted outbound tuples, those tuples with the

same downstream worker are batched first, and then batches

are sent out. So we also collect the sending time for each

outbound tuple batch. In addition, we collect memory usage

information using Java Management Extensions [21].

Note that Storm comes with APIs for monitoring, but we

find it not very efficient for data collection. Specifically, Storm

provides ITaskHook interface and a BaseTaskHook class for

user to create a monitor on each task and record runtime

statistics for each tuple. Using such APIs introduces an inter-

process connection for each task thread to pass out data,

which leads to higher overhead compared to using inter-thread

communications to collect data with an embedded hook, and

possibly blocks the execution of task threads. Moreover, there

is no existing API for collecting queuing and sending time.

Therefore we implement our own hook for Storm-specific data

collection. In order to collect tuple-level statistics efficiently

without blocking data processing, we use a high performance

inter-thread messaging library, LMAX Disruptor [27], to ef-

ficiently queue all collected data. Queued data will then be

averaged and transmitted periodically by a single consumer

thread.

A monitor runs in the background on each machine for

gathering data from hooks and collecting runtime machine

and worker related statistics using the Sysstat [38] tool set.

In the monitor, the pidstat program in the tool set is used to

collect statistics of a large number of process (worker) level

features related to CPU, memory, disk and context, such as

CPU usage, physical memory usage, number of minor/major

faults per second, size of data read from/written to disk per

second, number of voluntary/involuntary context switch per

second, etc, for all hosted workers every 15s. It also uses

the sar program to collect machine level features related

to CPU, context, memory page, data transfer, workload and

networks, every 30 seconds. Due to space limitation, we omit

the complete list of these process and machine level features.

Each monitor sends averaged runtime statistics for each worker

and for each machine to the controller every 30s. To efficiently

transmit data among hooks, monitors and the controller, we

utilize Apache Thrift [8] to define data structures and remote

process calls.

Even though we collect statistics data with over 70 features

at runtime, the overhead is negligible. This is because all

these features take numerical values in the 32-bit floating

point format and transmitting them from all VMs to Nimbus

only take several microseconds in a 1Gbps network, which

is much shorter than our collection periods mentioned above,

i.e., 5s/15s/30s.

267



(a) CPU usage (b) Outbound sending time (c) Inbound queuing time

Fig. 5: Prediction RMSE of Windowed URL Count

(a) CPU usage (b) Outbound sending time (c) Inbound queuing time

Fig. 6: Prediction RMSE of Continuous Queries

IV. PERFORMANCE EVALUATION

We implemented the proposed I-DRNN model using

Lasagne 0.2 [23] and Theano 0.7 [39]. We implemented the

dynamic grouping based on Storm 0.10.0 [7], and installed

Storm on top of Ubuntu Linux 14.04. We performed real

experiments on a virtualized cluster with 6 blade servers (each

with dual Quad-core Xeon E5506 CPUs and 18GB RAM)

connected by a 1Gbps network. The cluster has 11 Virtual

Machines(VMs) (each with 2 vCPUs and 2GB Memory) for

data processing. One of them was used to run Nimbus, while

the other 10 were used to run workers with supervisors and

our monitors. In addition, we also ran the Zookeeper and

Apache Kafka [3] with 3 and 2 separate VMs respectively.

The controller was run on a VM with 8 vCPUs and 12GB

memory.

We conducted our experiments using two representative

SDP applications (topologies): Windowed URL Count [37] and

Continuous Queries [10], [12].

Windowed URL Count: Windowed word count is a well-

known SDP application, which counts words from a data

stream within a given time window. We modified this topology

to count the number of accesses per URL in the past 2 minutes

from web server request traces using dynamic grouping. It has

a chain-like topology with one spout and three bolts. We used

Wikipedia request traces in September 2007 [40] as the input

data stream and loaded all the traces to Apache Kafka first for

data fetching before experiments.

The spout is a reader which reads a batch of request traces

at a time from Kafka, and feeds every single line separately to

the ExtractURL bolt using dynamic grouping. The ExtractURL

bolt extracts the timestamp and URL from each request trace

line and feeds them to the PartialCount bolt using dynamic

grouping. The PartialCount bolt performs a windowed count

and sends its counts to MergeCount bolt every 500ms using

global grouping. The last stage of the topology, MergeCount,

aggregates latest partial counts from all tasks of PartialCount

to obtain the windowed URL count results.

Continuous Queries: It consists of a spout and two bolts.

The spout continuously emits randomly generated queries,

each with a vehicle plate number and its speed, to the

Query bolt using dynamic grouping. The Query bolt randomly

generates a table with vehicle plates and information (such as

names and driver license IDs) of their owners in the beginning,

and takes a query from the spout and then iterates over the

table to find if there is a matching entry when a given vehicle

is speeding. If there is a match, the Query bolt emits the

corresponding tuple using global grouping to the Logger bolt

which simply writes what it receives to a file.

We tested the Windowed URL Count topology on 10

VMs with 14 workers, 2 spout executors, 5 and 6 executors

for ExtractURL and PartialCount bolt respectively, and 1

executor for the MergeCount bolt in all experiments. We ran

the Continuous Queries topology using 5 workers, with 1

spout executors, 3 Query bolt executors and 1 Logger bolt

executors for the experiments related to dynamic grouping

validation, and used 15 workers with 4 spout executors, 10

Query bolt executors and 1 Logger bolt executors in the other

experiments.
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A. Performance Prediction
We used the proposed I-DRNN model as well as

the widely used AutoRegressive Integrated Moving Aver-

age(ARIMA) [29] and Support Vector Regression (SVR) [35]

for one-step-ahead prediction of CPU usage, inbound tuple

queuing time and outbound tuple sending time of every

worker; and compared their prediction accuracies in terms of

Root Mean Squared Error (RMSE) [19].
1) Training: We ran each of two applications 5 times in

Storm for one hour and collected the datasets for training.

From each of 10 datasets, we used all data from 10 to 40min

for training, and then used the trained model to predict the

CPU usage, the outbound sending time (tuple batch) and the

inbound queuing time (tuple) for each worker between 40
and 60min. We examined the prediction performance in two

time periods: 1) between 40 and 45min, and 2) between 40
and 60min. For each time period, we computed RMSE for

every target feature of each worker first, and calculated the

average for each feature. Note that we didn’t use data collected

from first 10min since it has been shown [42] that Storm

usually stabilizes after 10min. Each of the worker and machine

runtime statistics is a sequence of 24- and 57-dimensional real

vector respectively. Each data point is normalized to a value

between [0, 1] using the min-max normalization as mentioned

above. We trained univariate time series models for each of

the three target features of each worker, using the forecast

package in R [20] for ARIMA and scikit-learn [32] for SVR

respectively.
We trained the proposed I-DRNN model for each of the

three target features using 20 different seeds to randomly

generate initial weights for each training dataset. We used 10%
data randomly selected from the collected data for validation

and the rest 90% for training, trained each model for 1000
epochs, and selected the model with the lowest validation error

for performance prediction.
2) Results and Analysis: We list all results from our exper-

iments in Figures 5, 6 and 7.
From Figure 5, we can see that for Windowed URL Count,

the average RMSE of prediction of the proposed I-DRNN

model between 40 and 45min are as low as 0.8169, 0.0028
and 0.0823 for three features, CPU usage, outbound sending

time and inbound queuing time, respectively, which are clearly

lower than those given by ARIMA and SVR. On average, I-

DRNN’s RMSE is 8.31% lower than ARIMA’s, and 19.30%
lower than SVR’s for prediction between 40 and 45min;

and the improvements become more significant, specifically,

29.08% and 17.69%, for prediction between 40 and 60min.

It is also interesting to see SVR maintains relatively stable

RMSEs when the end of the prediction period changes from

45min to 60min, while ARIMA’s RMSEs go much higher.
From Fig. 6, we can observe that for Continuous Queries,

I-DRNN model offers noticeable improvement over ARIMA

and SVR. For ARIMA, the I-DRNN gives 15.50% and 56.46%
lower RMSE for the two prediction periods respectively.

Compared to SVR, the improvements become 10.50% and

10.81% respectively. The results in these two figures show

that the proposed I-DRNN model outperforms both ARIMA

and SVR in terms of prediction accuracy.

Fig. 7 shows prediction details of CPU usage for both SDP

applications. These two figures show that 1) The proposed

I-DRNN model can well catch the changes of the target

feature in trend, even for a long prediction range. 2) The SVR

delivers less accurate results, compared with the proposed

model. 3) ARIMA fails to provide accurate prediction when

the prediction range is long.

(a) Windowed URL Count

(b) Continuous Queries

Fig. 7: Prediction for CPU usage

B. Dynamic Grouping

We validated our design and implementation of dynamic

grouping with experiments using a Continuous Queries topol-

ogy with 3 Query bolt executors. There were 3 tasks of Query

bolt, which were assigned to 3 workers on different VMs.

The corresponding results are presented in Fig. 8, which show

how the tuple processing rate (i.e., the number of processed

tuple per second) changes over time. We ran the Continuous

Queries topology for 900s and evenly split queries to all Query

bolt executors in the beginning. From time 150s to 330s (the

first and second red vertical lines from the left respectively),

we changed the split ratio to 7 : 3 : 2. We can see that the

tuple processing rate of these bolts change accordingly. Note

that the figures shows that the new configuration starts to take

effect with a very little delay. This experiment shows that our

dynamic grouping method can be used to control workload

distribution according to any given split ratio.
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Fig. 8: Validation for dynamic grouping

We also show that dynamic grouping can be used to bypass

a worker temporarily. From 500 to 690s, we set up a configura-

tion which moves workload of worker 3 completely to worker

1. As shown in this figure (last two vertical red lines), worker

3’s tuple processing rate quickly drops to 0 while worker 1’s

rate is doubled. These experiments validate the design and

implementation of the proposed dynamic grouping method.

C. Reliable Distributed Stream Data Processing

We justify effectiveness of the proposed control framework

on enhancing reliability by showing how well it can deal

with misbehaving workers/machines at runtime. We compared

Storm with the proposed predictive control framework (labeled

as “Predictive”) against the original Storm (labeled as “Orig-

inal”) in terms of the average tuple processing time (over a

topology) and failed tuple rate (the number of failed tuples

per second) on affected workers.

In the corresponding experiment, we injected additional

workload on a VM to make the corresponding workers mis-

behave. Specifically, we ran four CPU hogger threads, each of

which kept calculating square roots of random numbers, for

every running worker on the VM for 5 minutes.

Because of high CPU consumption caused by these CPU

hogger threads, the processing speed on the affected VM

was unable to catch up with the tuple arrival rate, which led

to slow workers and significantly increase on tuple failures.

It then resulted in much longer tuple processing time. In

Figure 9a, in the original Storm, the average tuple processing

time skyrockets from approximately 11ms to over 34000ms

due to misbehaving workers, and starts to have failed tuples.

The failed tuple rate goes all the way up to 1739 tuples/second.

However, with the proposed framework (in which the I-DRNN

model and dymanic grouping works together), the average

tuple processing time reaches its peak at 177ms at about 60sec

after the workload injection starts, and then quickly drops to

13ms (normal) with no failed tuples. Similarly, for Continuous

Queries, after the workload injection, we observe that the

average tuple processing time rises from 90ms to more than

214ms and the failed tuple rate goes all the way up to 157
tuples/second when the original Storm is used, compared with

the peak average processing time at 102ms and no failed tuples

when the proposed framework is applied.

These results justify our claim that the proposed control

framework can achieve minor performance degradation in

terms of average tuple processing time and failed tuples.

(a) Average tuple processing time

(b) Failed tuple rate

Fig. 9: Windowed URL Count

(a) Average tuple processing time

(b) Failed tuple rate

Fig. 10: Continuous Queries

V. RELATED WORK

Distributed/Parallel Stream Data Processing and Relia-
bility: As introduced above, Storm [7] is a distributed system

that is designed particularly for reliable processing of un-

bounded stream data. It uses a grouping policy to route tuples
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between different tasks. Other similar DSDPS include: Apache

S4 [4], Apache Flink [2], Microsoft’s Time-Stream [33] and

Google’s Millwheel [1]. Currently, Apache Spark [5] may be

the most popular distributed data processing platform, which

has an stream extension called Spark Streaming [6]. It is

an implementation of Discretized Streams (D-Streams) [43],

which slices streams into small batches of time intervals before

processing. In [28], Loesing et al. designed a DSDPS called

Stormy. Unlike Storm where the user can supply their own

bolts, Stormy only allows predefined processes. It provides

reliability by duplicating, enforcing strong order guarantee

and acknowledging events (similar to tuples in Storm). Me-

teor Shower [41] is a DSDPS proposed by Wang et al.
for handling large-scale failures. Its reliability is based on

parallel, asynchronous and application-aware checkpointing.

In [30], the authors implemented a partial key grouping

policy which provides load balancing for fields grouping using

key splitting and local load estimation. This policy enables

automatic tuple route adjustment by sending tuple to one of

two destination tasks based on load estimation. In [17], Gu et
al. proposed a predictive failure management approach that

employs online failure prediction to achieve more efficient

failure management in DSDPSs. They tested the proposed

approach over IBM System S. In a recent work [25], Li et
al. proposed a predictive scheduling framework for DSDPSs,

which leverages SVR to predict the average tuple processing

time for a given scheduling solution.

Unlike most of above works that use either a reactive

or proactive method for supporting reliability, the proposed

control framework uses a predictive approach, which can

achieve minor performance degradation without any reserved

resources (needed by a proactive approach). Our prediction

model here is different from those presented in closely related

works [17], [25]. Moreover, our objective is to design a

general and flexible control framework based on performance

prediction, which may be used for various purposes; so this

work is different from [17] targeting particularly at failure

management or [25] aiming particularly at minimizing average

tuple processing time.

Time Series Modeling and Prediction: ARIMA [29] is one

of the most popular linear model for time series prediction. In

[44], Zhang et al. employed ARIMA to predict resource usages

of VMs in a cloud computing environment and dynamically

provision resources based on the prediction. Zhang [45] used

a hybrid model of ARIMA and Artificial Neural Network

(ANN) to improve prediction accuracy on complex problems

with both linear and nonlinear correlation structures. SVR is

a non-parametric regression algorithm with good scalability

for high-dimensional data. In [34], Sapankevych and Sankar

provided a survey of SVR on time series modeling and

prediction. Connor et al. proposed a class of RNNs, namely

NARMA in [14], which show robustness towards outlier

detection with time series data. Different RNNs, especially

gated RNNs, have been proposed to solve a large variety

of complicated problems related to time series data such as

machine translation [13], speech recognition [15] and text

generation [16]. A comprehensive introduction to methods

proposed for time series analysis in the literature can be found

in the textbook [29].

Memory Modeling and Management for Co-location
Interference: Methods have been proposed to model and

manage memory with co-location interference in the literature.

In [48], Eklov et al. presented a low-overhead method for

accurately measuring application performance (CPI) and off-

chip bandwidth (GBps) as a function of available shared cache

capacity. In a later work [49], they proposed the bandwidth

bandit, a general, quantitative and profiling method for ana-

lyzing the performance impact of contention for memory band-

width on multicore machines. In [46], Casas et al. proposed

a method for measuring and modeling the performance of

hierarchical memories in terms of the application’s utilization

of the key memory resources: capacity of a given memory

level and bandwidth between two levels. They also presented

a performance measurement and analysis method for network

behavior based on empirical measurements in a concurrent

work [46]. Recently, Xu et al. [50] proposed DR-BW, a

new tool based on supervised learning to identify band-

width contention in Non-Uniform Memory Access (NUMA)

architectures and provided optimization guidance. In [51],

Zasadzinski et al. leveraged a neural network to predict job

evolution based on power time series of nodes and used it to

guide job termination policies.

We target at modeling co-location interference in a DSDPS,

whose workload and traffic load patterns are different from

those in a general distributed computing environment or in

a specific environment (such as NUMA) considered in these

related works. Hence, methods described above cannot be

applied here. Moreover, we leverage the emerging DRNN

model for our prediction task, which has not been used or

considered in these related works.

VI. CONCLUSIONS

In this paper, we presented design, implementation and eval-

uation of a novel predictive control framework to enable reli-

able DSDP. It has the following desirable features: 1) It makes

accurate performance prediction with careful consideration for

co-location interference using a two-tiered DRNN model. 2)

It employs a new grouping method, dynamic grouping, which

can distribute/re-distribute data tuples to downstream tasks

according to any given split ratio and can re-direct data tuples

to bypass misbehaving workers and/or machines according

to prediction. 3) It collects both process and machine level

runtime statistics with over 70 features to enable accurate

prediction. We implemented the proposed framework based on

Storm. We built two representative SDP applications for per-

formance evaluation: Windowed URL Count and Continuous

Queries. Extensive experimental results show 1) the proposed

DRNN model outperforms ARIMA and SVR in terms of

prediction accuracy; 2) dynamic grouping works as expected;

and 3) the proposed framework enhances reliability by offering

minor performance degradation with misbehaving workers.
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