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Abstract— In this paper, we aim to study networking problems
from a whole new perspective by leveraging emerging deep learn-
ing, to develop an experience-driven approach, which enables a
network or a protocol to learn the best way to control itself
from its own experience (e.g., runtime statistics data), just as
a human learns a skill. We present design, implementation and
evaluation of a deep reinforcement learning (DRL)-based control
framework, DRL-CC (DRL for Congestion Control), which real-
izes our experience-driven design philosophy on multi-path TCP
(MPTCP) congestion control. DRL-CC utilizes a single (instead of
multiple independent) agent to dynamically and jointly perform
congestion control for all active MPTCP flows on an end host with
the objective of maximizing the overall utility. The novelty of our
design is to utilize a flexible recurrent neural network, LSTM,
under a DRL framework for learning a representation for all
active flows and dealing with their dynamics. Moreover, we, for
the first time, integrate the above LSTM-based representation
network into an actor-critic framework for continuous (conges-
tion) control, which leverages the emerging deterministic policy
gradient to train critic, actor, and LSTM networks in an end-
to-end manner. We implemented DRL-CC based on the MPTCP
implementation in the Linux kernel. The experimental results
show that 1) DRL-CC consistently and significantly outperforms
a few well-known MPTCP congestion control algorithms in terms
of goodput without sacrificing fairness, 2) it is flexible and robust
to highly-dynamic network environments with time-varying flows,
and 3) it is friendly to regular TCP.

Index Terms— AI, deep learning, experience-driven control,
congestion control, TCP, multi-path TCP.

I. INTRODUCTION

MANY algorithms and protocols have been proposed to
operate computer and communication networks and uti-

lize its resources efficiently and effectively. Traditional meth-
ods for network control and resource allocation can be divided
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into two categories: state-oblivious and optimization-based.
A state-oblivious method usually follows a pre-defined (fixed)
policy for control and resource allocation. Typical examples
include shortest-path routing that uses the hop-count as the
routing metric and load-balancing routing (e.g., VLB [30])
that always splits traffic load evenly over all the candidate
paths. An optimization-based method usually consists of two
steps: 1) formulating a resource allocation problem into a
mathematical programming problem based on certain mathe-
matical models (such as queueing model [31] and interference
model [9]); and 2) designing an algorithm to solve it according
to its mathematical properties (such as convex programming).
Typical examples include those well-known Network Utility
Maximization (NUM) algorithms [19], [25]. We argue that
neither of these two approaches will work well for modern or
future networks (such as 5G network and Software Defined
Network (SDN)), which have become or are expected to
be very complicated and highly-dynamic. A state-oblivious
method usually leads to a simple algorithm or protocol, which,
however, may suffer from very poor performance (such as
throughput and delay) in a highly time-variant network due to
its lack of careful consideration for runtime states and subopti-
mal solutions. An optimization-based method, however, needs
to have an accurate prediction for future values of some key
parameters (such as user demands, link usages, etc) as input;
and accurate mathematical models to estimate/characterize
network behavior (after applying a given resource allocation
solution). Both of them are very challenging, especially in
complex networks.Hence, we aim to study networking prob-
lems from a whole new perspective by leveraging emerging
Artificial Intelligence (AI) techniques, especially deep learn-
ing, to develop an experience-driven approach, which enables
a network or a protocol to learn the best way to control itself
from its own experience (e.g, runtime statistics data), just as a
human learns a skill (such as swimming and driving). Unlike
state-oblivious or optimization-based methods, the experience-
driven approach does not rely on any mathematical model
but is expected to make wise decisions on online control
with full consideration for real-time runtime states. Even
though the term, “data-driven”, has been used in some related
works, we argue that the term “experience-driven” is more
accurate than “data-driven”. There are three kinds of data in a
communication network: user data (i.e., payload), control data
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(i.e., data in control messages and packet headers), and runtime
statistics. If we use the term “data-driven”, it is not clear
what kind of data we refer to. As mentioned above, runtime
statistics actually represent the past experience of a network.
So “experience-driven” basically means that a network learns
the best control policy from its runtime statistics collected in
the past.

To demonstrate the feasibility and superiority of this design
philosophy, we focus on a fundamental networking problem,
congestion control, in this paper. Specifically, we consider
congestion control in Multi-Path TCP (MPTCP) [6], which
was designed to make use of multiple network interfaces (e.g.,
Ethernet, WiFi and 4G/LTE) to improve end-to-end bandwidth
and robustness, and has already become a widely-used stan-
dard protocol. MPTCP allows to split a single TCP flow into
multiple sub-flows across multiple paths. It has attracted lots of
attention from both industry and academia due to its potential
on significant throughput improvements, which are highly
desired for some emerging applications that demand high end-
to-end bandwidth. Current TCP’s congestion control does not
perform well on lossy and high Round Trip Time (RTT) links,
especially on MPTCP [4]. Moreover, most congestion control
algorithms, including those designed particularly for MPTCP,
pre-define some packet-level events as response signals, and
specify a fixed control policy with one or multiple rules for
different cases. For example, halving the congestion window
when a packet loss is detected [13]; adjusting the congestion
window by a certain amount based on the changing rate of
RTTs [2]. Such congestion control algorithms may not work
well in a complex and highly-dynamic network, in which
many factors (such as random loss, a large range of RTTs,
lossy links, rate reshaping at gateways or middleboxes, etc.)
may affect its performance since it looks impossible to pre-
define the best or even a good rule for each possible case
that may occur at runtime. Note that traditional congestion
control algorithms can be considered as heuristic algorithms
for the corresponding optimization problems, which likely
lead to suboptimal (instead of optimal) solutions. Hence, they
can be categorized as optimization-based methods described
above.

In this paper, we present design, implementation and evalu-
ation of a Deep Reinforcement Learning (DRL) based control
framework, DRL-CC (DRL for Congestion Control), which
realizes our experience-driven design philosophy on MPTCP
congestion control. We choose DRL as the basis for our
design because DRL is a very promising technique for network
control due to its support for model-free control, and its
capability of handling dynamic and sophisticated state spaces,
which have been discussed and analyzed in a recent work [43].
DRL-CC utilizes DRL to learn to take best actions according
to runtime states without relying on any accurate mathematical
model or any pre-defined control policy.

However, designing a DRL-based framework for MPTCP
congestion control is not straightforward but quite challenging.
First, a straightforward solution is to use a DRL agent to
perform congestion control for each MPTCP flow indepen-
dently. However, this solution may not work well since it
lacks necessary and effective cooperations among these agents,

while concurrent flows may interfere with each other due
to their competition for common resources, which, however,
cannot be well addressed by independent agents. DRL-CC
leverages a single (instead of multiple independent) agent to
dynamically and jointly perform congestion control for all
active MPTCP flows on an end host with the objective of
maximizing the overall utility (defined by a utility function).
Note that according to TCP/MPTCP, congestion control is only
done on sending hosts. Hence, here “all active MPTCP flows”
only refer to those whose sending host is the one where the
DRL agent is running. It is quite challenging to use DRL to
dynamically handle multiple flows that may come and go at
any time since a DRL agent usually uses a deep feed-forward
neural network or a deep Convolutional Neural Network
(CNN) as the function approximator for action inference,
which has a fixed input size. The novelty of our design is to
utilize a Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM [12]), under a DRL framework for learning
a representation for all active flows and dealing with their
dynamics. Moreover, basic Deep Q-Network (DQN) based
DRL (proposed in the seminal work [21]), does not work
for the congestion control problem since it is only able to
deal with discrete control with a limited action space. We, for
the first time, integrate the above LSTM-based representation
learning network into an actor-critic framework called DDPG
(Deep Deterministic Policy Gradient [18]) for continuous
(congestion) control, and leverages the emerging deterministic
policy gradient [32] to train critic, actor and LSTM networks
in an end-to-end manner.

In addition, a unique and desirable feature of our design
is that we use a DRL agent to control all (instead of a
single) active MPTCP flows. In this way, we can hopefully
obtain a global optimal solution for MPTCP flows; while all
the traditional congestion control algorithms perform control
for individual MPTCP flows independently, thus can only
achieve local optimal or suboptimal solutions. So a traditional
algorithm usually behaves conservatively because if it tries
to be aggressive and selfish, one of flows may abuse all the
available resources and starve other flows. However, our DRL
agent has a global view over all the available resources and
MPTCP flows. Due to the training and working mechanisms
(e.g., back propagation) of the Reinforcement Learning (RL)
framework, it is instructed to make full use of all avail-
able resources to maximize the reward function (defined in
Section III), which is a widely-used utility function and is
known to be able to achieve a good tradeoff between goodput
and fairness [33].

We implemented DRL-CC based on the MPTCP imple-
mentation in the Linux kernel. We conducted extensive real
experiments to evaluate its performance. Specifically, we com-
pared DRL-CC with the well-known congestion control algo-
rithms proposed particularly for MPTCP, including LIA [27],
BALIA [26], OLIA [17] and wVegas [42], which have all
been implemented in the Linux Kernel [24]. Second, we tested
our method under different settings and cases, such as dif-
ferent link bandwidths, link delays, packet loss ratios, etc.
In addition, we conducted our performance evaluation in
terms of goodput, fairness, robustness and TCP-friendliness.
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The experimental results well justify the effectiveness and
superiority of DRL-CC.

To the best of our knowledge, we are the first to address
congestion control in MPTCP using emerging DRL. In addi-
tion, the end-to-end trainable model integrating LSTM, actor
and critic networks is novel and has not been used in the
context of DRL. Moreover, it can handle a variable input
size. We believe such a design may have a significant impact
on future research along this line since it can be applied to
many other system control problems with a time-varying input
size, e.g., for routing in mobile ad-hoc networks, connection
requests may come and go at any time as well.

II. DEEP REINFORCEMENT LEARNING (DRL)

In this section, we give a brief introduction to DRL. Under
a regular Reinforcement Learning (RL) framework, an agent
interacts with an environment (e.g., system) in discrete deci-
sion epochs. At each epoch t, the agent makes an observation
of the state st of the environment, takes an action at according
to its policy, and receives a reward rt. The agent aims to find
a policy π(s) to map its state to a deterministic action or to a
probability distribution over actions such that the discounted
cumulative reward R0 =

∑T
t=0 γtr(st, at) is maximized,

where r(·) is the reward function and γ ∈ [0, 1] is the factor
that discounts future rewards.

The deep version of RL was introduced in a well-known
work [21] by Mnih et al. from DeepMind, which extends
the traditional Q-learning to bridge the gap between high-
dimensional sensory inputs (e.g. raw images) and actions.
A unique feature of the DRL agent in [21] is to use a
Deep Neural Network (DNN) called DQN as the function
approximator. A DQN takes a state-action pair (st, at) as input
and outputs the corresponding Q value Q(st, at), which is the
expected discounted cumulative reward:

Q(st, at) = E

[
Rt|st, at

]
, (1)

where Rt =
∑T

k=t γkr(st, at). The action can be derived by
applying a commonly-used greedy policy:

π(st) = argmax
at

Q(st, at). (2)

According to Q-learning, the training target value for each
state-action pair can be derived using the Bellman equation:

yt = r(st, at) + γQ(st+1, π(st+1)|θQ), (3)

where θQ is the parameters of the DQN. Based on the target
value, the DQN can be trained by minimizing the following
loss:

L(θQ) = E

[
yt − Q(st, at|θQ)

]
. (4)

Even though neural network or DNN has been used as
the function approximator for RL before, it is known that
such a non-linear function approximator is not stable and may
even lead to divergence. To improve the stability of learning,
Mnih et al. [21] introduced two effective techniques: experi-
ence replay and target network. With experience relay, a DRL
agent collects and stores state transition samples into a relay

buffer, and then updates the DNN using a mini-batch sampled
from the replay buffer instead of the immediately collected
transition sample (used in traditional Q-learning). By doing
so, the DRL agent could break correlations in the observation
sequence, and learn from a more independently and identically
distributed past experience, which is required by most of
the training algorithms, such as Stochastic Gradient Descent
(SGD). They proposed to use a separate target network to
estimate target values < yt >, which shares the same network
structure as the original DQN. But its parameters are slowly
updated every C > 1 epochs and are held fixed in between.
These two techniques can smooth out the learning processing
and avoid oscillations or divergence.

As mentioned above, DQN-based DRL is restricted to
discrete control with a limited action space and there is
no trivial extension to continuous control, which, however,
is quite common in computer and communication networks
(e.g., congestion control). A commonly-used approach to con-
tinuous control is policy gradient [35]. In a recent work [18],
Lillicrap et al. introduced an actor-critic approach called
Deep Deterministic Policy Gradient (DDPG) for DRL, which
leverages both DNNs and the emerging deterministic policy
gradient [32] for continuous control. The key idea behind
DDPG is to simultaneously maintain two functions: one is
the parameterized actor function π(st|θπ) used for deriv-
ing actions; and another is the parameterized critic function
Q(st, at|θQ) used for evaluating actions. The critic function
is implemented using the DQN mentioned above, which takes
a given state-action pair as input and outputs the corresponding
Q-value. It can be trained as a regular DQN, which has been
introduced above. The actor function can be implemented by
another DNN, which takes a state as input and outputs the
best action (that could be continuous). As shown in [18],
to update the actor network, the chain rule can be applied
to the the expected cumulative reward J with respect to the
actor parameters θπ:

∇θπJ ≈ E

[
∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)

]

= E

[
∇aQ(s, a|θQ)|s=st,a=π(st) · ∇θππ(s|θπ)|s=st

]
.

(5)

Note that both experience replay and target network can
also be used together with DDPG to ensure the learning
stability.

III. DRL-BASED CONGESTION CONTROL FOR MPTCP

In this section, we present the proposed DRL-based frame-
work for congestion control in MPTCP, DRL-CC.

A. Overview

First of all, we give an overview for DRL-CC, which is
illustrated in Fig. 1. The key idea behind our design is to
utilize a single (rather than multiple independent) DRL agent
to perform congestion control for all active MPTCP flows
on an end host to maximize the overall utility (defined by a
utility function). As mentioned above, “all the active MPTCP
flows” only refer to those whose sending host is the one
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Fig. 1. The architecture of DRL-CC.

where DRL-CC is running. To realize this idea, we design
the architecture of DRL-CC (we will use DRL-CC and DRL-
CC agent interchangeably in the following), which consists of
the following components:

• Representation Network (Section III-B): It leverages
LSTM to learn a representation of current states of all
active MPTCP and TCP flows in a sequence learning
manner.

• Actor-Critic (Section III-C): It trains an actor network
and a critic network along with the LSTM-based repre-
sentation network in an end-to-end manner and derives
an action for congestion control of a MPTCP flow based
on the learned representation and the state of the target
flow.

Next, we describe the state, action and reward of DRL-CC:
STATE: The state of a flow i at epoch t si

t =
[s1,1

t , · · · , si,k
t , · · · , sN,Ki

t ], and st = [bi,k
t , gi,k

t , di,k
t , vi,k

t , wi,k
t ],

where si,k
t is the state of subflow k of flow i at t; bi,k

t , gi,k
t ,

di,k
t , vi,k

t and wi,k
t are the corresponding sending rate, goodput,

average RTT, the mean deviation of RTTs and the congestion
window size respectively; and N is the total number of both
TCP and MPTCP flows, and Ki is the number subflows of
flow i. If flow i is a TCP flow, then Ki = 1; and if flow
i is a MPTCP flow, then Ki ≥ 1. Then the state at epoch
t, st = [s1t , · · · , si

t, · · · , sN
t ]. Here goodput can be considered

as effective throughput, which only counts those successfully
received packets. We select these key parameters into the state
because they may have a significant impact on the end-to-
end performance and have been considered in the design of
some related works [41]. During our testing, we found that
adding more parameters into the state does not necessarily
result in noticeable performance improvement, which, how-
ever, undoubtfully increases data collection overhead. Note
that the values of these parameters are all measured during the
past epoch (t − 1). In order to well address interference and
fairness on an end host, we consider all the flows (including
both regular TCP and MPTPC) when designing the state space.
Certainly, if the flow is a (regular) TCP flow, then there is only
one subflow (i.e., Ki = 1).

ACTION: An action at epoch t at = [x1
t , · · · , xk

t , · · · , xK
t ],

where xk specifies how much change needs to be made to the
congestion window of subflow k of the target MPTCP flow.
The positive, negative and 0 values lead to increasing, reducing
and staying at the same congestion window size respectively.
Note that at each epoch t, DRL-CC only takes an action on
one (target) MPTCP flow.

REWARD: the reward at epoch t, rt =
∑N

i U(i, t), where
U(i, t) gives the utility of active MPTCP/TCP flow i. Note
that the proposed framework is not restricted to any particular
utility function. Many different functions (such as throughput,
delay, α-fairness [33]) can be used here to calculate the net-
work utility. This reward should be designed according to real
needs from upper-layer applications. In our implementation,
we chose a widely-used utility function U(i, t) = log gi

t [41],
where gi

t is the average goodput of MPTCP flow i during the
past epoch. It is known that maximizing this utility function
leads to proportional fairness, which is considered to achieve
a good tradeoff between goodput and fairness. Moreover, the
reward takes into account both TCP and MPTCP flows for the
sake of TCP-friendliness.

In short, DRL-CC works as follows. The DRL-CC agent
interacts with the end host by collecting the above runtime
state information st at each epoch t. The agent is periodically
queried by each MPTCP flow and there is only one querying
flow at each epoch t (i.e., target flow). At each epoch t, the
agent derives an action using the actor and critic networks
according to the representation learned by the LSTM-based
network and the state of the target flow. Then it deploys the
action via the MPTCP implementation (in the OS kernel) to
the target flow.

B. Representation Network

The representation network takes as input the states of
all active TCP and MPTCP flows (i.e., st) at each decision
epoch t and generates a representation (i.e., a vector with a
smaller size), which is then used by the actor-critic method
(Section III-C) for deriving actions. As mentioned above, the
main difficulty is to deal with the situation in which the
number of flows may change over time. Most DNN (such as a
feed-forward neural network) need to have a fixed input size.
A straightforward way to use a feed-forward neural network
here is to zero-pad the input if the actual number of flows is
smaller its input size. We tested this solution via experiments
and found that it is ineffective, especially for the cases where
the number of flows is much smaller. Similarly, if the number
of flows is larger, then we have to exclude some flows, which
obviously lead to poor representation learning too. We decide
to choose LSTM [12] to serve this purpose, which can have
a variable input size (length).

As illustrated in Fig. 2, the states of flows are fed into
LSTM one by one (one at each step) and the representation
is learned in a sequence learning manner [34] such that the
last hidden state hN

t is returned as the representation. For
simplicity, we denote this representation for epoch t by ht

(rather than hN
t ). It is worth mentioning that this LSTM-

based representation network can be trained together with the
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Fig. 2. The representation network.

actor and critic networks using back propagation in an end-
to-end manner, which is discussed in the next section. This is
very important since end-to-end training likely leads to better
performance than training each part of a model separately.

C. Actor-Critic Method

At each decision epoch t, the representation ht (learned by
the LSTM-based network described above) is concatenated
with the state of the target MPTCP flow and fed into the
actor-critic method as input. Then the actor-critic method
leverages the actor and critic networks to derive an action,
which specifies how to adjust the congestion window size for
each subflow of the target MPTCP flow. As mentioned above,
the network utility will be calculated used as a reward signal
to optimize the decision policy.

We formally present the DRL-MPTCP framework in Algo-
rithm 1. First the algorithm randomly initialize all parameters
θR of representation network R(·); θπ of actor network π(·);
and θQ of critic network Q(·). The target networks are used
here to improve the learning stability. Target networks R′(·),
π′(·) and Q′(·) clone the structures of their counterparts,
whose parameters are initialized using their counterparts (line
2) and slowly updated using a control parameter τ (line
19). τ is usually set to a very small value such that these
target networks are only slightly updated in this step. In our
implementation, we set τ = 0.001. This DRL agent will run
as a daemon process, waiting for queries from MPTCP flows.
So the main body of this algorithm includes a dead loop, where
et is the state of the querying (i.e., target) MPTCP flow.

Since all the parameters of the DNNs are randomly
initialized, in the early stage of training, the DRL agent
cannot totally rely on the action derived from the actor
network. An inexperienced DRL agent needs to explore
sufficiently with random transition samples to gain necessary
good and bad experience, and eventually learns a good
(hopefully the best) control policy. Similar as in [18],
we apply an Ornstein-Uhlenbeck process to add some random
noise to a derived action for efficient and effective exploration
in this continuous control task.

The representation of all active flows ht is derived from
the representation network R(·) (line 6), and the action for
the target MPTCP flow is derived from the actor network
π(·) (line 7). Experience relay has also been utilized here
to improve learning stability. Transition samples are first
stored into a replay buffer B (line 10), and then randomly
sampled to a mini-batch of H samples (line 11) for training
the representation, critic and actor networks. As introduced

above, the critic network is basically a DQN. Hence, the
parameters of the critic network θQ are updated by minimizing
the commonly-used squared error loss (line 14), where the
target value yi is evaluated by applying the Bellman equation
(line 13). The parameters of the representation and actor
networks θR and θπ are updated together with the sampled
(i.e., an average over the H samples) policy gradients using
the chain rule defined in Equation (5) (lines 15–18). From this
training process, we can see that the proposed neural network
model (including the representation, critic and actor networks)
is end-to-end trainable.

In our implementation, the representation network is a
single-layer LSTM unit. The actor network is a fully-
connected feed-forward neural network with 2 hidden layers,
which includes 128 neurons in both layers. The Rectified
Linear function is used for activation in hidden layers and
the hyperbolic tangent function is used for activation in the
output layer. The critic network has the same structure as
the actor network except the output layer, which has only
one linear neuron. In our implementation, the actor and critic
networks are trained by the Adam optimizer [15], whose
learning rates are set to 0.0001 and 0.001 respectively. The
discount factor is set to γ = 0.90. To simplify the neural
network implementation, we leveraged TFLearn [37], which
provides a higher-level API to TensorFlow, to construct the
above three neural networks.

D. Implementation of DRL-CC

We implemented the DRL-CC framework on Ubuntu 16.04.
We chose to use the MPTCP v0.92 [24], which is a Linux
kernel implementation of MPTCP and was built based on the
Linux Kernel long-term support release v4.4.x. The available
resource of a kernel program is strictly limited: even the
floating point calculation is not allowed in the kernel. A DRL
agent, however, may need to do lots of complex mathematical
calculations (e,g, computing the gradients) for both forward
passes and back propagations in the DNN training and infer-
ence. Thus, it is impossible to run the DRL agent in the
kernel. We implemented the proposed DRL agent as a user-
space process using Tensorflow [1]. The DRL agent runs as a
daemon process, which is always kept active and waits for the
MPTCP flow queries. Every flow reserves a memory space in
the kernel for their subflows, and every subflow can fetch their
congestion window size from its memory space. Whenever a
MPTCP flow queries, the DRL agent derives an action and
deploys it by updating the corresponding congestion window
size for each subflow through the MPTCP implementation.

In order to be compatible to current MPTCP implemen-
tation, we implemented the proposed DRL-CC agent as a
pluggable program following the Linux’s specification for
congestion control. First, we specified the congestion handler
interface tcp_congestion_ops, which is a structure of func-
tion call pointers. Then we implemented a callback function
mptcp_drl_cong_avoid, which will be called by each subflow
every time an acknowledgment packet is received. Using this
function, subflows can keep observing and updating their
congestion window sizes.
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Algorithm 1 DRL-CC

1: Randomly initialize representation network R(·), actor
network π(·) and critic network Q(·), with parameters
θR, θπ and θQ respectively;

2: Initialize target networks R′(·), π′(·) and Q′(·) with
parameters θR′

:= θR, θπ′
:= θπ, θQ′

:= θQ;
3: Initialize replay buffer B;
4: Initialize Ornstein-Uhlenbeck process O for exploration;
5: while (TRUE) do
6: Derive hidden state ht from the representation network

R(st);
7: Derive an action at from the actor network π(et, ht);
8: Apply the random process O to generate an action at

based on at;
9: Execute action at and observe the reward rt;

10: Store transition sample (st, et, at, rt, st+1, et+1) into
replay buffer B;
/**Training the three networks**/

11: Sample H transitions (sj , ej , aj , rj , sj+1, ej+1) from B;
12: Obtain representation hj+1 from R′(sj+1);
13: Compute target value for the critic network Q(·):

yj := rj + γ · Q′(ej+1, hj+1, π
′(ej+1, hj+1));

14: Update the parameters of the critic network by
minimizing the loss: 1

H

∑H
j=1 (yj − Q(ej , hj , aj))2;

15: Compute the policy gradient from the critic network:
∇aQ(e, h, a)|a=π(ej ,hj),h=R(sj),e=ej

;
16: Update the parameters of the actor network using the

sampled policy gradients:
1
H

∑H
j=1 ∇aQ(e, h, a) · ∇θππ(e, h)|e=ej ,h=R(sj);

17: Compute the policy gradient from the actor network:
∇hπ(e, h)|e=ej ,h=R(sj);

18: Update the parameters of the representation network
using the sampled policy gradient:
1
H

∑H
j=1 ∇aQ(e, h, a) · ∇hπ(e, h) · ∇θRR(s)|s=sj ;

/**Updating the target networks**/
19: Update the parameters of the corresponding target

networks:
θR′

:= τθR + (1 − τ)θR′
;

θQ′
:= τθQ + (1 − τ)θQ′

;
θπ′

:= τθπ + (1 − τ)θπ′
;

20: end while

In addition, before the online-testing, we trained the DRL-
CC agent for over 50, 000 epochs (i.e., 50, 000 transition sam-
ples) in an offline manner, using iPerf3 [14] to continuously
generate packets to keep the network always busy in the test
environment, which produced sufficient transition samples for
training. Due to different link delays, packet loss rates and
bottleneck bandwidth settings, the offline training time varies
from an hour to several hours. For example, in the setting of
the bandwidth b1 = b2 = 8Mbps, the delay d1 = d2 = 200ms
and the packet loss rate p1 = p2 = 0.5%, it took 2.5 hours to
complete the offline training process. Once it was taken online,
it immediately became ready for use without any setup latency.
Note that offline training only needs to be done once and no
additional offline training is needed if the agent is rebooted.

As mentioned above, even though we used DNNs for inference
in our implementation, each of which, however, has only 2
hidden layers. According to our testing, the online inference
time is really short, about 0.5ms, which causes negligible
overhead for online decision making. Just as many other RL
agents, re-training needs to be performed for DRL-CC when
the network environment changes (e.g., from a low-bandwidth
and high-delay network to a high-bandwidth and low-delay
network). This is because sufficient transition samples need to
be collected to update the DNN of the agent such that it can
gain enough experience for the new environment to make good
decisions when similar situations occur. However, what is the
the best way to re-train a trained agent for a new environment
is a fairly big research topic and is out of the scope of this
paper, which will be studied in our future work.

IV. PERFORMANCE EVALUATION

We conducted a comprehensive empirical study for perfor-
mance evaluation under various test scenarios. In this section,
we describe the settings of our test environment, test scenarios,
and then present and analyze the corresponding results.

A. Common Experimental Setup

We compared DRL-CC with a few baselines, including
LIA [27], BALIA [26], OLIA [17] and wVegas [42], which
are all well-known congestion control algorithms proposed
particularly for MPTCP. We used their implementation in
MPTCP v0.92 [24] for our experiments.

We set up a test environment in our lab for our experiments.
The test environment consists of 2 laptops as client and server
separately, both running Ubuntu Linux 16.04LTS. Due to the
light weight of our design, there is no need for any special
device (such as GPU) for training. We found that we could
easily run and train the DRL-CC agent on a regular laptop,
which has an Intel i7-3630QM CPU and 4GB memory. Two
nodes are connected with a Gigabit switch. The server and
client have two and one Gigabit Ethernet interfaces respec-
tively, which created two different communication links (i.e.,
single-link paths) for our testing.

In the test environment, each MPTCP flow includes two
subflows, which is the most common setting for MPTCP
in practise and has also been used for testing in related
works [4], [26]. Similar as in [4], we controlled some key
parameters of the communication links in the test environment,
such as delay, bandwidth and loss rate using netem [23],
which can emulate the communication properties of a wide
area network for testing network protocols. We considered a
wide range of settings in our experiments: the link delay was
set to range from 50ms to 400ms, the packet loss rate was
set to range from 0.5% to 4%, and the bottleneck bandwidth
varied from 2Mbps to 16Mbps. In our experiments, all the
data packets were captured by tcpdump [38] and analyzed by
wireshark [40].

B. Test Scenarios and Experimental Results

We introduce our test scenarios and present the corre-
sponding experimental results. In the first four test scenarios,
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Fig. 3. Scenario 1: b1 = b2 = 8Mbps, d1 = d2 = 100ms and p1 =
p2 = 2%.

we evaluated the performance of DRL-CC in a relatively
steady environment. Specifically, 5 MPTCP flows (each with 2
subflows) were established between the server and the client
and kept active through each experiment. The MPTCP data
traffic was generated by retrieving a binary document from a
simple HTTP server. The document size ranged from 2MB
to 8MB. The goodput was calculated by diving the document
size by the elapsed download time. Each number presented in
the following figures is the average goodput per MPTCP flow.

Scenario 1: In this scenario, we show how the document
size affects the goodput. We set the bandwidth b1 = b2 =
8Mbps, the delay d1 = d2 = 100ms and the packet loss
rate p1 = p2 = 2%. We used the documents with dif-
ferent sizes: 2M, 4M and 8M. The corresponding results
are presented in Fig. 3. First, we can see that DRL-CC
significantly outperforms all the other methods in terms of
goodput. For example, when the document size is 8M, DRL-
CC outperforms LIA, BALIA, OLIA, wVegas by 313%, 279%,
272%, 198% respectively. Moreover, since there are two links
(paths) between the server and the client and each of them
has a bandwidth of 8Mbps, the total end-to-end bandwidth is
16Mbps. There are 5 MPTCP flows and each of them obtains
an average goodput of 3.2Mbps (if DRL-CC is used), which
means that DRL-CC makes full use of all available bandwidth.
In addition, we show the Jain’s fairness index (calculated
over all MPTCP flows) given by each algorithm in Fig. 3b.

We can see that all the algorithms achieve very good fairness
since the corresponding indices are all close to 1. Hence,
compared to the baselines, DRL-CC leads to much higher
goodput without sacrificing fairness. This is mainly due to the
way how we define the reward (Section III-A), particularly
the utility function, which usually leads to a good tradeoff
between goodput and fairness.

Since all the methods have a similar behavior with different
document sizes, and in order to have a relatively long testing
time, we used the 8M document in the following scenarios. We
present the results corresponding to the next three scenarios in
Fig. 4. In addition, we found all the algorithms led to similarly
good fairness in the other scenarios. Due to space limitation,
we omit the corresponding results and figures.

Scenario 2: In this scenario, we fixed the delay d1 =
d2 = 100ms and the packet loss rate p1 = p2 = 2%, we
aimed to show the performance of all these methods with
different bandwidths by setting the bandwidth b1/b2 to 2M,
4M, 8M and 16M in different experiments respectively. The
corresponding results are presented in Fig. 4a. We can see
when the bandwidth is small (i.e. 2Mbps), the goodputs of
all the methods are fairly low and almost the same. When the
bandwidth is increased, DRL-CC leads to sharp improvements
on goodput, which are much more significant than those
given by the other methods. Particularly, when the bandwith
is 8Mbps, DRL-CC leads to 325%, 280%, 269% and 181%
improvements over the baselines respectively.

Scenario 3: This scenario was designed to show how the
goodputs given by these methods vary with the delay. We set
the bandwidth b1 = b2 = 8Mbps and the packet loss rate
p1 = p2 = 0.5%, the delay d1/d2 was changed from 20ms all
the way to 400ms. The results are shown in Fig. 4b. Similar
as in the last scenario, when the delay is small (i.e. 50ms), the
goodputs of all the methods are fairly high and close. When
the delay is increased, the goodputs given by all the methods
drop as expected. However, DRL-CC only experiences pretty
minor degradation on goodput; while the drops of the other
methods are much more substantial. Particularly, when the
delay is 400ms, DRL-CC offers 656%, 473%, 489% and 382%
improvements over the baselines respectively.

Scenario 4: We designed this scenario to see how the
packet loss rate affects the goodputs given by all the methods.
We set the bandwidth b1 = b2 = 16Mbps and the delay
d1 = d2 = 50ms. The packet loss rate was set to 0.5%,
1%, 2% and 4% in different experiments respectively. The
corresponding results are shown in Fig. 4c. Similar as in
Scenario 2, when the packet loss rate is increased, DRL-
CC maintains fairly statable performance without a sharp
degradation on goodput. However, the goodputs given by all
the baselines drop dramatically with the packet loss rate.
Particularly, in the case of lossy links with a loss rate of 4%,
DRC-CC outperforms these baselines by 468%, 456%, 409%
and 319% respectively.

In summary, first of all, this set of scenarios and experiments
well justify the superiority of DRL-CC on goodput. Particu-
larly, we observe that DRL-CC significantly outperform the
baselines in those cases with high bandwidth, long delay and
high packet loss rate. Through good training, DRL-CC can
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Fig. 4. Performance of all the methods over different settings.

find that making better use of available bandwidth leads to
much higher goodput. So it always tries to increase congestion
window sizes quickly and aggressively when detecting more
available bandwidth. However, the other methods behave much
more conservatively in this case since they don’t have a mech-
anism that can explicitly and quickly utilize available band-
width. In addition, DRL-CC is more suitable for tough network
environments (e.g., lossy wireless networks) with a high delay
or packet loss rate. As mentioned before, most existing meth-
ods follow pre-defined policies to control congestion windows,
which are usually too conservative, i.e, reducing or signifi-
cantly reducing window sizes once detecting long RTTs or
packet losses but opening congestion windows back up slowly.
This certainly leads to low goodput. However, in these cases,
DRL-CC usually makes a few attempts and quickly figures
out the best ways to set up window sizes without being too
conservative or aggressive. Therefore, we can observe DRL-
CC brings much more improvements in these tough cases.
Last but not the least, as mentioned above, DRL-CC features a
joint congestion control over all active MPTCP flows, which is
expected to deliver superior performance over those baselines
that perform congestion control for flows independently.

Next we introduce two scenarios, in which we tested
DRL-CC in a more dynamic and complicated environment.
For example, we changed the number of MPTCP flows or
even the number of subflows over time. Note that these
situations may occur in practice, e.g. a user may open
and close a website frequently over time, which leads to
establishments and terminations of multiple MPTCP flows.
The number of subflows of a MPTCP may also change due
to the network state fluctuations, e.g. stepping away from a
WiFi hotspot may cause the loss of the corresponding link on
a mobile phone. Note that those baselines are not supposed
to have any problem dealing with such dynamics since they
all manage individual flows separately.

Most settings in Scenarios 5 and 6 are the same as the last
few scenarios. We used those key parameters as follows: the
bandwidth b1 = b2 = 8Mbps, the delay d1 = d2 = 100ms
and the packet loss rate p1 = p2 = 2%. In the following
scenarios, rather than requesting a file from server, we directly
used iPerf3 [14] to continuously generate packets to keep the
network busy.

Fig. 5. Scenario 5: Average total goodput in the case with dynamic
establishments and terminations of MPTCP flows.

Scenario 5: In this scenario, we tested DRL-CC’s capability
of dealing with the case with dynamic establishments and
terminations of MPTCP flows. During a testing period of
150 seconds, establishments of MPTCP flows followed a
Poisson process where the lambda was set to 10; and each flow
lasted for 30 seconds. The average (over time) total goodputs
of all MPTCP flows are shown in Fig. 5. We can see that
DRL-CC is robust to such a highly-dynamic environment.
Compared to the baselines, DRL-CC can still achieve 382%,
351%, 336%, 257% improvements on total goodput.

Scenario 6: As the number of subflows of a MPTCP flow
may be changed during the running time, we considered the
scenario where one of two subflows suddenly disappeared.
Specifically, a total of 5 MPTCP flows were established in
the beginning. During a testing period of 200 seconds, one
of the subflows of each flow was closed via shutting down
a network interface at 60s. The corresponding results are
shown in Fig. 6. Similar as in the last scenario, DRL-CC can
deliver robust performance in this dynamic case. Specifically,
DRL-CC outperforms those baselines by 193%, 178%, 186%,
204% respectively. In order to show the behavior of flows and
the performance of DRL-CC over time, we plot Fig. 7. We
can see that DRL-CC experiences a sharp drop right at the
subflow termination time 60s. However, we observe that its
total average goodput stabilizes at 8Mbps (maximum possible
after the termination), which shows that DRL can quickly



XU et al.: EXPERIENCE-DRIVEN CONGESTION CONTROL: WHEN MPTCP MEETS DRL 1333

Fig. 6. Scenario 6: Average total goodput in the case with dynamic
terminations of MPTCP subflows.

Fig. 7. Scenario 6: Average total goodput over time in the case with dynamic
terminations of MPTCP subflows.

adjust itself to the single network interface setting at 60s, and
utilize the rest of available bandwidth.

In summary, we conclude that DRL-CC is robust to highly-
dynamic network environments. As mentioned above, our
design features an LSTM-based network that can learn an
effective representation of all active flows. Unlike feed-
forward neural networks or CNNs (commonly used in DRL),
our model can well handle a variable input size (i.e., the cases
with dynamic establishments and terminations of flows and
subflows). We actually observed that DRC-CC was able to
adjust its control policy quickly and properly whenever there
was change during these experiments, which ensures good
and stable overall performance. Our results have confirmed
the effectiveness and robustness of our design.

Another important property of MPTCP is its friendliness
to (regular) TCP flows. If there simultaneously co-exists both
MPTCP and TCP flows in a network, MPTCP should not
bring goodput improvements for its own flows at the cost of
those TCP flows. It is quite common to have both TCP and
MPTCP flows in a network since some servers/clients may
not support MPTCP.

Scenario 7: We designed this scenario to evaluate the good-
puts of all active flows given by all these congestion control
methods in a MPTCP and TCP co-existing environment. In
this scenario, there were a total of 5 MPTCP flows (that used
two different links (path) for communications as described
above), and 5 regular single-path TCP flows that competed

Fig. 8. Scenario 7: Per-flow goodputs of regular TCP and MPTCP flows.

Fig. 9. Scenario 8: Average per-flow goodput in the case with asymmetric
wireless links.

for one of MPTCP’s links. Those key parameters were set
as follows: b1 = b2 = 8Mbps, d1 = d2 = 100ms and
p1 = p2 = 2% We measured the average per-flow goodput for
both TCP and MPTCP, and presented the results on Fig. 8.
We can see that if DRL-CC is used, the goodput of a TCP
flow is quite similar as those given by the baselines; however,
the corresponding MPTCP flows have a much higher goodput.
Specifically, compared to the best baseline LIA, the per-flow
TCP goodput corresponding to the use of DRL-CC is slightly
lower but the corresponding MPTCP goodput is 106% higher.
Moreover, DRL-CC offers higher goodputs for both TCP and
MPTCP flows than all the other baselines. This is also mainly
due to the way how we define the reward (Section III-A),
particularly the utility function, which takes into account
both TCP and MPTCP flows. This observation confirms that
DRL-CC is TCP-friendly.

In addition, we conducted an additional experiment in
a practical wireless environment, in which a laptop was
equipped with two WiFi network interfaces and there existed
asymmetric links. Most of other settings are the same as those
in the above scenarios, and there were 5 MPTCP flows in total.

Scenario 8: In this scenario, we aimed to demonstrate how
DRL-CC performs in a practical wireless environment with
asymmetric links. The bandwidth and delay were limited
to b1 = 100Mbps and b2 = 10Mbps; and d1 = 5ms and
d2 = 2ms respectively. We measured the average per-flow
goodput for MPTCP flows, and presented the corresponding
results in Fig. 9.
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Since both the delay and the packet loss ratio are fairly
low in this scenario, the performance gaps between different
methods are relatively smaller compared to other scenarios
but they are still noticeable. Specifically, we can see that
DRL-CC still outperforms all the other baseline methods in
terms of goodput, by 9.6%, 7.7%, 8.51% and 66.5% on
average respectively. Thus, we can conclude that DRL-CC is
able to make good use of available bandwidth and perform
consistently well under different network conditions such as
those with asymmetric characteristics.

V. RELATED WORK

A. Congestion Control

Congestion control, as a fundamental problem in network-
ing, has been widely studied in the context of TCP [2], [13].
Most of the classical congestion control algorithms pro-
posed for regular TCP are either loss-sensitive (such as
NewReno [13]), or delay-sensitive (such as TCP Vegas [2]).
They usually pre-define some packet-level events as conges-
tion signals, and conduct the congestion window adjustment
based on a fixed control policy. Recently, several works
targeted at learning a control policy from the runtime state.
In a pioneering work [41], the authors presented a con-
gestion control approach called Remy, which can generate
control rules for different cases. Dong et al. [3] proposed
Performance-oriented Congestion Control (PCC), in which
each sender continuously observes the connection between
its actions and empirically experienced performance, enabling
it to consistently adopt actions that result in high Perfor-
mance. Zaki et al. [44] introduced a congestion control pro-
tocol, Verus, which continuously learns a delay profile that
captures the correlation between end-to-end packet delay and
the outstanding window size, and uses this correlation to adjust
the congestion window.

Unlike these related works targeting at the regular TCP,
we aim to optimize performance of more recent MPTCP,
which is quite different from MPTCP. It has also been
shown [26], [27] that MPTCP may suffer from serious per-
formance degradation when directly applying a regular TCP
congestion control algorithm separately on each sub-flow.

Congestion control is also a critical problem for MPTCP
and has also been well studied recently in the literature.
In [20], Michio et al. proposed a congestion control scheme,
which enables an end-to-end connection that uses flows along
multiple paths to fairly compete with TCP flows at shared
bottlenecks, and in the meanwhile, maximizes the utilization of
different paths. Hassayoun et al. [11] proposed Dynamic Win-
dow Coupling (DWC), a multipath congestion control mecha-
nism that seeks to be fair to other flows in the network while
being able to maximize its own throughput. DWC detects shift-
ing bottlenecks in the network and responds by dynamically
regrouping subflows. In [27], Raiciu et al. designed Linked
Increase Algorithm (LIA), which couples the congestion con-
trol policies running on different subflows by linking their
increase functions. Khalili et al. [17] presented Opportunistic
Linked Increase Algorithm (OLIA), which resolves some
performance issues of LIA while retaining non-flappiness

and responsiveness. As an extension of the well-known TCP
Vegas [2], Xu et al. [42] proposed weighted Vegas for MPTCP,
which adopts the packet queuing delay as a congestion signal,
achieving fine-grained load balancing. In [26], Peng et al.
proposed BAlanced LInked Adaptation (BALIA) to generalize
existing congestion control algorithms through a fluid model
and strike a good performance. Ferlin et al. [5] quantified the
penalty of the coupled congestion control for links that do not
share a bottleneck, then designed and implemented a practical
shared bottleneck detection (SBD) algorithm for MPTCP,
namely MPTCP-SBD, to overcome the penalty. A recent
work [45] presented MPTCPD, an energy-efficient variant of
MPTCP particularly for datacenters, which can provide energy
efficiency by minimizing the flow completion time. Morevoer,
Le et al. [16] developed ecMTCP, which is an energy-efficient
congestion control algorithm. Dong et al. [4] designed mVeno
particularly for wireless communications with multiple radio
interfaces. Raiciu et al. [28] implemented MPTCP in Linux
kernel and evaluated its performance. They mainly focused on
the algorithms needed to efficiently use paths with different
characteristics, notably send and receive buffer tuning and
segment reordering. They also compared the performance of
their implementation with regular TCP on web servers.

As mentioned above, unlike these related works present-
ing pre-defined policies for congestion control in MPTCP,
we develop a novel model-free experience-driven framework
based on DRL, which learns the best control policy based on
real-time runtime states. Moreover, the proposed framework
features a novel end-to-end trainable DNN model for action
inference, which can even deal with a variable input size.

B. Deep Reinforcement Learning (DRL)

DRL has won his world-wide fame due to its impressive
successes on game-playing tasks such as Go and Atari games.
It has recently attracted extensive research attention from both
industry and academia. In a pioneering work [21], Mnih et al.
proposed deep Q-learning and DQN, which can learn success-
ful policies directly from high dimensional sensory inputs. As
introduced above, they introduced two new techniques, expe-
rience replay and target network, to ensure learning stability.
Hasselt et al. [10] proposed Double Q-learning as a specific
adaptation of the DQN and an improvement to the earlier
work [21]. Another improvement was introduced in [29] to
use prioritized experience replay in DQN such that important
transition samples can be replayed more frequently, which can
lead to more efficient learning. In [39], Wang et al. presented
a new dueling neural network architecture, which includes
two separate estimators: one for the state value function and
one for the state-dependent action advantage function. So far,
we only discuss works related to discrete control with a limited
action space. Continuous control has also be addressed in
the context of DRL. Lillicrap et al. [18] proposed an actor-
critic-based and model-free algorithm, DDPG, based on the
deterministic policy gradient, which represents a state-of-the-
art DRL-based solution to continuous control. Gu et al. [7]
proposed normalized advantage functions for reducing sample
complexity for continuous control. Gu et al. [8], the authors



XU et al.: EXPERIENCE-DRIVEN CONGESTION CONTROL: WHEN MPTCP MEETS DRL 1335

proposed an interesting policy gradient method Q-Prop, which
uses a Taylor expansion of the off-policy critic as a control
variant. Mnih et al. [22] proposed asynchronous gradient
descent for optimizing learning with DNNs, and showed its
successes on a wide variety of continuous motor control tasks.

Even though, DRL has made tremendous successes, the
research on the feasibility and effectiveness of using it in the
context of quite different network control problems is still in
its infancy. To the best of our knowledge, we are the first to
leverage DRL for congestion control in DRL. Moreover, the
neural network architecture in DRL-CC is different from those
in all these related works.

VI. CONCLUSION

In this paper, we presented design, implementation and
evaluation of a DRL-based framework, DRL-CC, for con-
gestion control in MPTCP. DRL-CC utilizes a single agent
to dynamically and jointly perform congestion control for
all active MPTCP flows on an end host with the objective
of maximizing the overall utility (such as goodput). DRL-
CC features a novel end-to-end trainable DNN model for
action inference, which consists of a flexible LSTM-based
representation network, a critic network and an actor network.
This neural network architecture can be used to learn an
effective representation of all active TCP and MPTCP flows
to enable the above joint control, and deal with network
dynamics with time-varying flows. We implemented DRL-CC
based on the MPTCP implementation in the Linux kernel.
We conducted a comprehensive empirical study to evaluate
the performance of DRL-CC under seven different scenarios.
The experimental results have well justify its effectiveness and
superiority over a few well-known MPTCP congestion control
algorithms (including LIA, OLIA, BALIA and wVegas) in
all of these scenarios in terms of goodput and fairness; its
robustness to highly-dynamic environments with time-varying
flows; as well as its friendliness to the regular TCP.
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