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Abstract—In this paper, we propose to leverage the emerg-
ing deep learning techniques for spatiotemporal modeling and
prediction in cellular networks, based on big system data. First,
we perform a preliminary analysis for a big dataset from China
Mobile, and use traffic load as an example to show non-zero
temporal autocorrelation and non-zero spatial correlation among
neighboring Base Stations (BSs), which motivate us to discover
both temporal and spatial dependencies in our study. Then we
present a hybrid deep learning model for spatiotemporal predic-
tion, which includes a novel autoencoder-based deep model for
spatial modeling and Long Short-Term Memory units (LSTMs)
for temporal modeling. The autoencoder-based model consists of
a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs
(LSAEs), which can offer good representations for input data,
reduced model size, and support for parallel and application-
aware training. Moreover, we present a new algorithm for
training the proposed spatial model. We conducted extensive
experiments to evaluate the performance of the proposed model
using the China Mobile dataset. The results show that the
proposed deep model significantly improves prediction accuracy
compared to two commonly used baseline methods, ARIMA and
SVR. We also present some results to justify effectiveness of the
autoencoder-based spatial model.

Index Items: Cellular Network; Big Data; Spatiotemporal Mod-
eling, Deep Learning; Autoencoder; Recurrent Neural Network

I. INTRODUCTION

There is no doubt that we are living in the big data

era [5]. Big data can refer to two different things in the

context of wireless networks. First, last decade has seen an

exponential growth on mobile devices and Internet of Things

(IoT) globally. Beyond communication, these devices have

been playing a key role in many aspects of people’s daily

life, including computing, entertainment, sensing, etc. As a

result, these activities have generated enormous mobile data

for wireless networks, which we can call big user data. In

addition, wireless networks have become more and more ad-

vanced and complicated, which are generating a large amount

of runtime system statistics (such as traffic load, resource
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usages, etc) every second. For example, In [8], Ding et al.

showed the volume of spectrum state data could be in the

order of zettabytes (ZBs, 1 ZB = 1021 Bytes) in a 100 ∗ 100
km2 area, during one week, on a spectrum ranging from from

0 to 5 GHz. We can call such data big system data.

Tremendous research efforts (e.g., [28], [29]) have been

made to develop algorithms and protocols for wireless net-

works to utilize their resources efficiently and effectively.

However, most of them aimed at optimizing resource allo-

cation, assuming that some key factors (such as traffic load,

spectrum usages, computing resource usages, etc) are given as

input. Limited work has been done to model and predict the

pattern of these key factors, which are highly time and location

varying. Instead of treating big system data as an unwanted

burden, we should leverage them as a great opportunity for

better understanding user demands and system capabilities

such that we can optimize resource allocation to better serve

mobile users.

Wireless system data are basically time series data. Quite

a few models and methods [6] have been proposed for time

series analysis. AutoRegression Integrated Moving Average

(ARIMA) and Support Vector Regression (SVR) are two most

widely used methods, which have been applied to wireless

networks. For example, ARIMA has been used in [26], [38]

to predict the future traffic load. However, the limitation of

ARIMA lies in their natural tendency to concentrate on the

mean values of the past series data, which makes it unable

to capture the rapid variational process underlying traffic

load [17]. SVR model is also limited for the reason that the

users need to determine some key parameters for the model,

and it lacks a structured way for determining best values for

these parameters [17]. More importantly, these methods use

only historical data of the target for prediction without taking

into account spatial dependency (i.e., neighboring BSs), which,

however, is very important in a wireless network.

In this paper, we propose a novel deep learning approach for

spatiotemporal modeling and prediction in cellular networks,

using big system data. Deep learning is a multi-layer repre-

sentation learning method [34], which aims to automatically

discover a simple but proper representation for the given raw

data. Each layer is a non-linear module that transforms the

representation of the previous layer into a more compact

representation. Deep learning has been shown to dramatically

improve the state-of-art on many application domains, in-

cluding image/video processing, natural language processing,

etc [34]. It is particularly suitable to infer information from
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large datasets and requires very little domain knowledge and

engineering by hand. This work aims to show how deep

learning can be utilized to model time series data collected

from a cellular network and make accurate prediction.

First, we perform a preliminary analysis for a big dataset

from the largest wireless carrier in China, China Mobile, and

use traffic load as an example to show non-zero temporal

autocorrelation and non-zero spatial correlation among neigh-

boring Base Stations (BSs), which motivate us to discover

both temporal and spatial dependencies in our study. We then

present a hybrid deep learning model for time series prediction,

which includes a novel autoencoder-based deep model for spa-

tial modeling and Long Short-Term Memory units (LSTMs)

for temporal modeling. The autoencoder-based model con-

sists of a Global Stacked AutoEncoder (GSAE) and multiple

Local SAEs (LSAEs), which can offer good representations

for input data, reduced model size, and support for parallel

and application-aware training. Moreover, we present a new

algorithm for training this autoencoder-based spatial model. In

addition, we conducted extensive experiments to evaluate the

performance of the proposed model using the China Mobile

dataset. The results show that our model significantly improves

prediction accuracy compared to two commonly used baseline

methods, ARIMA and SVR. We also show some results to

justify effectiveness of the autoencoder-based spatial model.

To the best of our knowledge, we are the first to leverage

the emerging deep learning techniques for spatiotemporal

modeling and prediction in wireless networks by developing

a new hybrid deep model, and showing its effectiveness and

superiority with real data from a major wireless carrier.

II. PRELIMINARY DATA ANALYSIS

In this section, we first describe the dataset used for analysis

and evaluation, and then we perform a preliminary analysis for

the data, which motivates our design.

A. Dataset

Fig. 1. Locations of BSs in our dataset

The dataset consists of data collected from a large LTE

network of China Mobile at Suzhou, a major city located in

the southeastern part of China. The data was collected from

2, 844 BSs, roughly covering an area of 6, 500 km2. Locations

of all the BSs are shown in the map given by Fig. 1. Here,

our analysis is performed based on the downlink and uplink

traffic load. However, the proposed model (Section III) can

be applied to other features. The dataset includes average

traffic load of each BS in every hour during the period

from 00:00 05/01/2015 to 23:00 09/30/2015. To facilitate data

analysis, we divide the target area into a grid, with each

cell covering a square of 500 × 500 m2. Then every BS can

be mapped into a cell in the grid. If a cell includes more

than one BS, then its traffic load is the aggregated load.

Note that unlike traditional cellular networks, current dense

small cell networks do not have a hexagon-based layout. A

tuple (m,n) is used to uniquely identify each cell. We denote

D = {dm,n,t},∀m,n, t, which is the downlink/uplink traffic

load of cell (m,n) at timeslot t. Since uplink and downlink

can be considered separately, without abusing the notation,

we use this to denote both of them. In addition, we denote

dm,n = {dm,n,t},∀t.
For each cell (m,n), we normalize the data into the range

[0, 1]. We adopt the tanh estimator method, a robust and

efficient method for normalizing time series data [14], which

calculates the normalized values as follows:

d̂m,n = 0.5(tanh(
0.01(dm,n − d̄m,n)

σdm,n

) + 1), (1)

where d̄m,n and σdm,n
are the average and standard deviation

of dm,n respectively.

B. Data Analysis

In our preliminary analysis, we try to explore data depen-

dency in both the temporal and spatial domains. dm,n can

be treated as a collection of a random process samples at

cell (m,n). So we can examine data dependency in terms of

temporal autocorrelation and spatial correlation in the temporal

and spatial domains respectively. We summarize our main

findings in the following:

Observation 1: Dataset D exhibits non-zero autocorrelation

in the temporal domain.

The sample AutoCorrelation Function (sample ACF) [6] is

a widely used method for discovering data dependency in the

temporal domain, which describes the dependency between the

values of a sample process as a function of time lag h. The

definition of the sample ACF at cell (m,n) can be given as

follows (for the sake of readability, we omit the notations of

m, n in this definition):

ρ(h) =

T−|h|∑
t=1

(dt+|h| − d̄)(dt − d̄)

T∑
t=1

(dt − d̄)2
,−T < h < T ; (2)
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Fig. 2. Temporal autocorelation

where T and d̄ are the total count and mean value of data

in the temporal dimension, respectively. The autocorrelation

value lies in the range [−1, 1]. ρ(h) = 1 indicates total positive

autocorrelation between data with a time lag of h; while

ρ(h) = −1 means total negative autocorrelation. Note that

ρ(h) = 0 denotes no autocorrelation.

Fig. 2 shows a sample ACF at time lag h = 0, 1, · · · , 200 for

both downlink and uplink data. We can see that when the time

lag equals one or multiple of 24 (hours), the autocorrelation is

relatively high. This shows that the traffic load at a cell follows

a clear daily pattern. For example, the traffic load peak and

off-peak hours are similar on each day. Therefore, dataset D

exhibits non-zero autocorrelation in the temporal domain.

Observation 2: Dataset D reveals non-zero correlation in

the spatial domain.

We examine the data correlation in the spatial domain by

calculating a widely used metric [7] for a pair of cells (m,n)
and (m′, n′):

ρ =
cov(dm,n,dm′,n′)

σdm,n
σdm′,n′

, (3)

where cov(·) is the covariance operator, and σ is the stan-

dard deviation. Similarly, this correlation coefficient ranges in

[−1, 1] as well.

TABLE I
SPATIAL CORRELATION

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Cell 1 1.000 0.167 0.435 0.130 0.040 0.341 0.307
Cell 2 0.396 1.000 0.338 0.129 0.084 0.310 0.222
Cell 3 0.345 0.541 1.000 0.159 0.162 0.697 0.536
Cell 4 0.437 0.439 0.458 1.000 0.104 0.131 0.114
Cell 5 0.360 0.471 0.492 0.508 1.000 0.163 0.080
Cell 6 0.286 0.491 0.550 0.432 0.535 1.000 0.603
Cell 7 0.284 0.506 0.526 0.459 0.535 0.577 1.000

We examine the correlation among cells for both downlink

and uplink data, and present the results among 7 closely

located cells in Table I. Each cell is subsequently located

on the east side of the previous one. Note that the upper

triangular part of Table I shows the correlation for uplink data,

while the lower triangular part is for downlink data. We can

clearly observe none-zero correlation among these cells from

the table. Actually, more than 50% of the correlation values are

greater than 0.300. In addition, we can see that the correlation

values among cells vary a lot. For instance, downlink data in

Cell 1 and Cell 2 have a correlation value of 0.396; while Cell

5 and Cell 6 have a correlation value of 0.535, even though

Cell 2 and Cell 6 are of the same spatial relationship to Cell 1

and Cell 5, respectively. This property indicates that the spatial

correlation is highly location-dependent.

III. SPATIOTEMPORAL MODELING AND PREDICTION

A. Overview

As mentioned above, simple temporal modeling that uses

only historical data of the target may not work well here due

to strong spatial correlation observed from the data. Motivated

by the observations described above, we design a novel hybrid

deep learning model to perform spatiotemporal modeling and

prediction for each cell (m,n), which leverages historical data

collected from both the target cell and its neighboring cells

surrounding it. The proposed model consists of three major

components: Local Stacked AutoEncoders (LSAEs), a Global

Stacked AutoEncoder (GSAE) and Long Short-Term Memory

units (LSTMs). As illustrated by Fig. 3, the proposed model

works as follows:
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Fig. 3. The proposed deep learning model

1) Data of the cell of interest (marked red) and its neigh-

boring cells form a data patch (marked blue), which can

include values of one or multiple features of interest (such

as downlink/uplink traffic load). The GSAE takes such a data

patch as input, producing an encoded representation (called

global representation). Note that there is only one GSAE,

which is applied to all patches.

2) After being encoded by the GSAE, each patch will be fed

to the corresponding LSAE to generate another representation

(called local representation). The global representation and

local representation will then be concatenated (⊕) to represent

each patch.

3) The concatenated representations will then be passed to

LSTMs for prediction.
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For spatial modeling, we choose autoencoder [3] as a

starting point in our design because it has been shown to

be a simple and effective model for providing a good rep-

resentation of input data with much smaller size. We come

up with a new hybrid structure based on autoencoders by

introducing GSAE and LSAE, whose benefits are explained

in Section III-B. However, existing training methods do not

work for the proposed hybrid model. Hence, we also present

a new training algorithm in Section III-B. Note that one way

to select neighboring cells for a target cell is to choose all

those surrounding it and falling into a square box as shown in

Fig. 3. However, the proposed model is not restricted to this

method. This can be determined according to actual networks

and applications.

In addition, we choose an RNN, particularly LSTM, for

temporal modeling and prediction because gated RNNs (such

as LSTM), use gates to control how to update hidden states

and specify how much past information should be let through,

which have been shown to be effective on modeling long-term

dependencies [11].

TABLE II
MAJOR NOTATIONS

Notation Description

(m,n) Index of cell and the corresponding data patch

t and T Index and total number of data points
in the temporal domain

i and I Index and total number of GSAE layers

j and J Index and total number of LSAE layers

Wgi and W′
gi

Weights of encoder and decoder in layer i of GSAE

Wlj and W′
lj

Weights of encoder and decoder in layer j of LSAE

bgi and b′
gi

Biases of encoder and decoder in layer i of GSAE

blj and b′
lj

Biases of encoder and decoder in layer j of LSAE

hgi and hlj Hidden units in GSAE and LSAE

B. Spatial Modeling

Here, we describe the proposed model for spatial modeling,

which is a combination of a GSAE and multiple LSAEs.

An autoencoder is a model (usually a one-hidden-layer neu-

ral network) trained to reconstruct its input, which can be used

to obtain a different representation (i.e., hidden layer) of the

input with a much smaller size [4], [20]. The process to obtain

a different representation is referred to as encoding, while the

process to reconstruct its input is referred to decoding. In our

implementation, we adopt the denoising autoencoder, which

is an extension of a classic autoencoder [32]. It was designed

to make the learned representation robust by reconstructing

partially corrupted input. Autoencoders can be stacked to

form a deep network [32]. Stacked autoencoders have been

shown to be able to effectively extract further non-linear

representation [3], [32].

A global representation (i.e., hidden layer of an autoen-

coder) can be obtained, given the data patch of a cell and

a trained GSAE. However, as discussed above, there exists

location-dependent spatial correlation for a data patch. There-

fore, it is necessary to obtain a better representation with

less reconstruction loss. To achieve this goal, we propose to

use an LSAE together with the trained GSAE to capture the

local location-dependent spatial correlation and yield a better

representation.

Wg

Wl

Wl

GSAE
LSAE 

for (m, n)

11

Wg3

2

*

2
Wg*

*

Data Patch

(m, n)

hg3

h l1

h l2

hg1

hg2

Fig. 4. The proposed autoencoder-based spatial model

An example of the LSAE for cell (m,n) with the GSAE

is given in Fig. 4. Note that superscript (∗) indicates they are

trained variables. So W∗
gi

are trained weights of layer i of

GSAE. For the sake of readability, notations for bias variables

blj , b′
lj

, b∗
gi

and b′∗
gi

are omitted in both figures. Note that for

either GSAE or LSAEs, the layer number can be 1, resulting

in a single-layered autoencoder.

Given a trained GSAE, we use an LSAE to further reduce

the reconstruction loss of a data patch. The layer 1 weights

of the LSAE can be trained to reduce reconstruction loss of

layer 1 in the GSAE. Then higher layers of the LSAE are

trained to learn a different representation of the lower layers.

Finally, the highest representation of the GSAE concatenated

by the highest representation of the LSAE generates a better

representation of a local data patch.

The proposed hybrid (global + local) model leads to the

following benefits:

• Better Representation: Different cells share some com-

mon characteristics, which are captured by the GSAE.

However, as discussed above, each cell also has its spe-

cific location-dependent characteristics, which are cap-

tured by the corresponding LSAE. Hence, compared to

the GSAE-only model, the proposed hybrid model can

provide a better presentation for the given data, which

has been validated by results presented later.

• Reduced Model Size: An SAE with Hi hidden units in

layer i has
∑I

i=1
Hi−1∗Hi weight variables (where H0 is

the input dataset size), and (H0 +
∑I−1

i=1
2Hi +HI) bias

variables. The number of variables will get very large,

when the dataset size is big. A large model is usually

difficult to train. With the proposed hybrid structure, we

have one global, and multiple local SAEs, which both

have moderate sizes. Training such models is much easier

and faster.

• Support for Parallel Training: Given a trained GSAE,

training LSAEs is independent of each other. Therefore,
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they can be trained in parallel.

• Support for Application-aware Training: LSAEs can be

trained according to the needs of applications. For some

applications, we may not be interested in all the cells in

the cellular network. If so, we can only train those LSAEs

corresponding to cells of interest.

Training the hybrid model in Fig. 4 is not straightforward.

A well-known work [32] introduced a greedy layer-wise algo-

rithm for effectively training SAE. GSAE can be trained using

this algorithm. However, the next step is to train an LSAE with

a trained GSAE, for which the existing algorithm [32] cannot

be directly applied.
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GSAE LSAE
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*
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3Wg *'

Wg1
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(m, n)

Fig. 5. The unrolled GSAE and LSAE

For training and fine-tuning, we need to unroll the GSAE

and LSAE, which are shown in Fig. 5. Next, we formally

define the encoding function qlj (·) and decoding function

qlj (·) for each layer i of an LSAE.

plj (Xlj ) = Ylj = δ(WljXlj + blj )

qlj (Ylj ) =



δ(W′∗

g1
(W∗

g1
Xl1 + b∗

g1
) + b′∗

g1

+W′
l1
Yl1 + b′

l1
),

j = 1

δ(W′
lj
Ylj + b′

lj
), otherwise.

Here, δ(·) is the activation function (we used the sigmoid

function in our implementation). Xlj is the input of layer j,

which will be encoded. Ylj is the encoded result of layer

j, which can be decoded for reconstruction. However, Ylj

can also be encoded by upper layer to obtain a more abstract

representation. That is to say, Xlj+1
= Ylj . Wlj , W′

lj
, blj

and b′
lj

are the weights for encoding, weights for decoding,

bias for encoding and bias for decoding, respectively, in the

LSAE. W∗
g1

, W′∗
g1

, b∗
g1

and b∗
g1

are the trained weights

for encoding, trained weights for decoding, trained bias for

encoding and trained bias for decoding, respectively, in the

GSAE. Note that ql1(·) establishes the connection between

the GSAE and LSAE.

Algorithm 1: Training the LSAE with J layers for cell

(m,n)

Input : Dataset D, the trained GSAE with weights

W∗
gi

, bias b∗
gi

, b′∗
gi

Output: W∗
lj

, b∗
lj

, b′∗
lj

1 Xl1 := ∅;

2 forall t do

3 Xl1 := Xl1 ∪ patch(dm,n,t);

4 b′
l1
= 0;

5 Wlj := 0, ∀j;

6 Wl1 ,bl1 ,b
′
l1
:=

argminWl1
,bl1

,b′

l1

L(Xl1 , ql1(pl1(X̃l1)));

7 Xl2 := pl1(Xl1), j := 2;

8 while layer j ≤ J do

9 Wlj ,blj ,b
′
lj
:=

argminWlj
,blj

,b′

lj

L(Xlj , qlj (plj (X̃lj )));

10 Xlj+1
:= plj (Xlj ));

11 j := j + 1;

12 unroll the GSAE and LSAE as in Fig. 5;

13 W∗
lj
,b∗

lj
,b′∗

lj
:= argminWlj

,blj
,b′

lj

L(X̃l1 ,X
′),

∀j ∈ {1, 2, ..., J};

14 return W∗
lj

, b∗
lj

, b′∗
lj

;

We use tied weights [32] for the GSAE and LSAE: the

weight matrix in a decoding function is the transpose of the

weight matrix in the encoding function, i.e.,W′
gi

= WT
gi

,

W′
lj

= WT
lj

. Note that if Wl1 = 0 and b′
l1

= 0, the

proposed model degenerates into a GSAE, because in this

case, ql1(Yl1) = δ(W′∗
g1
(W∗

g1
Xl1+b∗

g1
)+b′∗

g1
) is actually the

reconstructed result of the GSAE. We can initialize Wlj = 0

and b′
l1

= 0 as the starting point for training an LSAE. We

formally present the LSAE training algorithm as Algorithm 1,

which consists of two phases: pre-training and fine-tuning.

In this algorithm, patch(dm,n,t) gives input data corre-

sponding to Cell (m,n) and its neighboring cells (surrounding

Cell (m,n)) at timeslot t. X̃i is the corrupted version of Xi.

Lines 1–3 generate the input data for the first layer in the

LSAE. As discussed above, Line 4 initializes b′
l1

= 0 and

line 5 initializes the weights Wlj = 0. Line 6 pre-trains the

first layer with a partially corrupted input. The reconstruction

loss is defined to be the cross entropy as in [3], [20]:

L(X,Z) =
∑

xlog(z) + (1− x)log(1− z). (4)

In our implementation, we applied the commonly-used

Stochastic Gradient Descent (SGD) [19] algorithm to mini-

mize the reconstruction loss. Other methods, such as RMSProp

and AdaGrad [19], can also be applied here to train the model.

Line 7 generates the input Xl2 for the second layer with

uncorrupted Xl1 . Lines 8–11 show the pre-training process

for layer 2 up to layer J . After layer j is pre-trained, the

input Xlj+1
for (j + 1)-th layer can be obtained from Xlj+1

= plj (Xlj ). Note that the uncorrupted input Xlj is fed to the
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encoder. After all the layers have been pre-trained, we unroll

the trained GSAE and LSAE as shown in Fig. 5 for fine-

tuning (Line 13), where all weight matrices and bias variables

are updated. X′ is the reconstructed input.

An LSAE cannot be trained without the GSAE because the

decoding function of LSAE relies on the trained GSAE. The

first layer of the LSAE is pre-trained and fine-tuned differently

from other (upper) layers, which takes the trained layer 1 of

GSAE as input. Given the pre-trained and fine-tuned layer

1, layers 2 to J of the LSAE are pre-trained and fine-tuned

independently from the GSAE. Note that, given a trained

GSAE, all LSAEs can be trained in parallel. In addition,

it is not required to have the same structure for the GSAE

and LSAE: GSAE and LSAEs can have different numbers of

layers; and the number of hidden units in each layer can also

be set differently. Moreover, the structures of LSAEs do not

have to be the same.

C. Temporal Modeling and Prediction

As mentioned above, we propose to use an RNN for tempo-

ral modeling and prediction, which takes the representations

learned from the hybrid spatial model as input.

An RNN is a generalization of the feed forward neural net-

work for modeling sequence (time series) data [22]. However,

a well-known problem with standard RNNs is that it can be

difficult to model long-term dependencies [16]. Long Short-

Term Memory (LSTM) was proposed in [15], which is known

to be able to capture long-term temporal dependencies [11],

[12]. LSTM incorporates gates, which allow the model to learn

how to forget previous hidden states and how to update the

current states. A diagram of the LSTM unit from [36] is shown

in Fig. 6, which is a slight simplification of [13].
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Output 

Gate

Input 

Gate

Input

Modulation 

Gate

σ

φ+

input xt

recurrent 

h t-1

Output 
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gt

· ·
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c t-1 ·
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Modulation 

Gate

φ
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Fig. 6. LSTM unit [36]

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = φ(Wxcxt +Whcht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ φ(ct)

The LSTM unit consists of a single memory cell ct, an input

and output modulation gate (gt and ht) and three gates (input

it, output ot and forget ft). σ(·) is the sigmoid function; and

φ(x) is the hyperbolic tangent function φ(x) = 2σ(2x) − 1.

⊙ and ⊕ denote the dot product and sum of two vectors,

respectively. The W terms denote the weight matrices. For

example, Whf is the hidden-forget weight matrix; while the

b terms are the biases.

The memory cell combines the previous cell states, current

input and previous output, to update hidden states. The forget

gate determines if the information should forgotten or remem-

bered. The output gate learns how the memory cell should

affect the hidden states.

To predict the future value dm,n,t′+1 for a cell (m,n), the

data patches corresponding to the past T timeslots are taken

as the input. They will be encoded by the GSAE and the

LSAE. For each timeslot t ≤ t′, the following three values

will be concatenated as a vector: dm,n,t, and GSAE and LSAE

representations of patch(dm,n,t). In this way, we obtain a

temporal sequence of vectors, as shown in Fig. 7. Then the

LSTM unit processes this sequence as described above and

predict dm,n,t′+1.

LSTM LSTM LSTM LSTM

... ...

dm,n,t

GSAE representation

LSAE representation

t't'-1t'-2t'-3

Fig. 7. Temporal modeling and prediction

IV. PERFORMANCE EVALUATION

A. Settings

We compared our approach with two widely used methods

for time series analysis. The first approach is ARIMA [18],

which is one of the most popular linear models for time series

forecasting and has been applied to wireless networks [33],

[38]. The second baseline approach is SVR, which is a variant

of Support Vector Machine (SVM) proposed for regression [9],

[27]. It has been also applied for time series analysis in

many applications [21], [23]. In the experiments, we used

the implementation of ARIMA and SVR in two libraries [19]

and [24], respectively. These two baselines were compared

with the proposed model in terms of three commonly used

performance metrics [10]: Mean Squared Error (MSE), Mean

Absolute Error (MAE), and Log Loss (also known as binary

cross-entropy).

For neighboring cell selection in spatial modeling, we chose

to use data from all cells located within a 11× 11 square box
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that is centered at the location of a target cell. That is to say,

we considered data from 120 neighboring cells for modeling

Cell (m,n).
We chose the commonly used sigmoid function as the

activation function in each layer of both the GSAE and LSAEs.

Regarding the corruption process in autoencoders, we adopted

a stochastic method proposed in [32]. In our implementation,

the corruption level was set to 0.1. The GSAE has two layers

(unrolled), and the lower layer has 20 hidden units, and second

layer has 2 hidden units. All the LSAEs has a single layer with

2 hidden units.

We randomly chose 15 cells for testing. For each cell

(m,n), we split the data into training set and test set. We

presented the corresponding results in the following.

B. Prediction Results

First, we present the experimental results to show the overall

prediction performance of the proposed model.

Fig. 8 shows a comparison between prediction results and

the actual values (from the dataset) for both downlink and

uplink traffic load at a randomly chosen cell. We can see that

the prediction results well match the trend of actual values.

Specifically, the MSE, MAE and Log Loss are 0.042, 0.165
and 0.583, respectively for downlink traffic load; while, they

become 0.031, 0.137, 0.556 respectively for uplink. Moreover,

prediction results are very close to the actual values around

the major transition points, when the traffic load falls below

or rises above 0.4.

Fig. 9 shows a comparison among ARIMA, SVR and the

proposed model for both downlink and uplink traffic load in

terms of MSE, MAE and Log Loss for one of the chosen

locations, while Fig. 10 presents the average errors over all the

chosen locations. From these two figures, we can see that the

proposed model consistently outperforms ARIMA and SVR in

terms of all the metrics. Specifically, in Fig. 10, the proposed

model offers about 30.8%, 20.5%, 33.1% less error than SVR

on average in terms of MSE, MAE and Log Loss, respectively.

Moreover, it leads to around 40.4%, 28.4%, 18.5% less error

than ARIMA on average in terms of MSE, MAE and Log

Loss, respectively. These results well justify effectiveness of

the emerging deep learning models on cellular network data

analysis and more importantly, the superiority of our design

that takes into account data dependencies in both the temporal

and spatial domains.

C. Spatial Modeling

In this subsection, we present the results to justify the ef-

fectiveness of the proposed hybrid model for spatial modeling

approach.

Data patches are encoded by both the GSAE and LSAEs.

The decoders can reconstruct them so that we can take an

in-depth look to make sure the encoded results are indeed

good representations of the original data. Fig. 11 (downlink)

and Fig. 12 (uplink) show the reconstructed results of data

patches corresponding to 9 cells. Each image corresponds to

a data patch; and each tiny block (i.e., pixel) in an image
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Fig. 8. Prediction results VS. actual values

corresponds to a cell. Hence, each image has 11 ∗ 11 blocks.

Brightness of a pixel indicates how heavy the traffic load of

the corresponding cell is (the brighter, the heavier).

In both figures, the first rows are the original data patches

of the 9 randomly chosen cells; The second rows are the

corresponding patches reconstructed by the GSAE. The last

rows are data patches reconstructed by The proposed hybrid

model (GSAE+LSAE). Note that multiple LSAEs were trained

since the original data patches came from different cells.

From these two figures, we can see that the reconstructed

results given by the GSAE is relatively “blurry” but somehow

still captures the patterns of the original data; while the final

reconstructed results given by the proposed hybrid model are

very close to the original data. These results confirm that the

proposed hybrid model does offer good representations for the

original data.

Now we show how LSAEs can help improve the prediction

performance. In this experiment, the number of hidden units

of our single-layered LSAEs, k, was changed from 0 to 4,

with 0 corresponding to the case without LSAEs. The second

layer of GSAE was then set to have (4− k) hidden units. All

other settings remain the same. In this way, even though the

value of k is changed, the GSAE and a LSAE together had a

representation with a constant length of 4, which ensures a fair

comparison. Fig. 13 shows how the performance improvement

ratio changes with k, which is defined as follows:

M(0)−M(k)

M(0)
∗ 100%,

where M(k) denotes the prediction error (MSE, MAE or Log

Loss) corresponding to k (M(0) then corresponds to the case

without LSAEs).

From Fig. 13, we can see that the prediction performance

improvement rises monotonically with k. Specifically, in terms

of MSE for downlink, the improvement ratio goes up from

1.96% to 5.54%, when n increases from 1 to 4. This obser-

vation validates our claim that learning local characteristics is

essential and learning more helps improve prediction perfor-

mance. However, the tradeoff is that more complicated local

models may lead to much longer training time. Determining
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Fig. 11. Reconstructed downlink traffic load

Fig. 12. Reconstructed uplink traffic load

the best configurations for the GSAE and LSAEs is task

dependent. It depends on the nature of input data, available

computing resources and the number of cells of interest.

V. RELATED WORK

Research efforts have been made for modeling and pre-

diction in communication networks. Specifically, time series

analysis methods have also been applied for predicting traffic

load. In [26], Shu et al. showed that seasonal ARIMA models

could be used to model and predict wireless traffic. In [38],

Zhou et al. proposed a network traffic prediction model,

which is a combination of linear time series ARIMA model

and non-linear GARCH model. Hong et al. applied SVR for

short-term traffic load forecasting, and proposed a simulated
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Fig. 13. Prediction performance improvement (Top: Downlink, Bottom:
Uplink)

annealing algorithm and a genetic algorithm to optimize the

selection of SVR parameters in [17]. Spatial modeling and

estimation methods have been proposed for traffic load in

wireless networks [2], [31]. To predict the self-similar network

traffic with high burstiness, the authors of [35] proposed a new

hybrid method based on the combination of the covariation

orthogonal prediction and the artificial neural network. A

spatiotemporal compressive sensing framework was proposed

for modeling Internet traffic matrices in [37]. Moreover, a very

recent work [25] was focused on spatiotemporal analysis for

application usages in wireless networks.
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In addition, Akbar et al. proposed to model and predict

the spectrum occupancy of licensed radio bands with Hidden

Markov Models (HMMs) [1]. In [30], Tumulus et al. designed

two adaptive channel status predictor using a neural network

based on multilayer perceptron and the hidden Markov model.

A priori knowledge of the statistics of channel usage is not

required in the prediction schemes. Chen et al. presented a

detailed study [7] with first and second order statistics of

collected data, including channel occupancy/vacancy, channel

utilization and temporal, spectral and spatial correlation. A 2-

dimensional frequent pattern mining algorithm was developed

to predict channel availability based on past observations.

Unlike these works, we are the first to propose a deep learn-

ing model for spatiotemporal prediction in cellular networks.

VI. CONCLUSIONS

In this paper, we first performed a preliminary analysis

for a real dataset from China Mobile to show temporal

and spatial dependencies. Then we presented a hybrid deep

learning model for spatiotemporal prediction, which includes a

novel autoencoder-based deep model for spatial modeling and

LSTMs for temporal modeling. The autoencoder-based model

consists of a GSAE and multiple LSAEs, which can offer

better representations for input data (compared to the GSAE-

only model), reduced model size, and support for parallel

and application-aware training. Moreover, we presented a

new algorithm for training the proposed spatial model. The

experimental results show that, compared to ARIMA and SVR,

the proposed deep model significantly improves prediction

accuracy; and the autoencoder-based spatial model is effective

and efficient.
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