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Abstract— Ubiquitous mobile devices with rich sensors and
advanced communication capabilities have given rise to mobile
crowdsensing systems. The diverse reliabilities of mobile users
and the openness of sensing paradigms raise concerns for data
trustworthiness, user privacy, and incentive provision. Instead
of considering these issues as isolated modules in most existing
researches, we comprehensively capture both conflict and inner-
relationship among them. In this paper, we propose a holistic
solution for trustworthy and privacy-aware mobile crowdsensing
with no need of a trusted third party. Specifically, leveraging
cryptographic technologies, we devise a series of protocols to
enable benign users to request tasks, contribute their data,
and earn rewards anonymously without any data linkability.
Meanwhile, an anonymous trust/reputation model is seamlessly
integrated into our scheme, which acts as reference for our
fair incentive design, and provides evidence to detect mali-
cious users who degrade the data trustworthiness. Particularly,
we first propose the idea of limiting the number of issued
pseudonyms which serves to efficiently tackle the anonymity
abuse issue. Security analysis demonstrates that our proposed
scheme achieves stronger security with resilience against possible
collusion attacks. Extensive simulations are presented which
demonstrate the efficiency and practicality of our scheme.

Index Terms— Mobile crowdsensing, data trustworthiness, user
privacy, incentive fairness.

I. INTRODUCTION

THE recent proliferation of mobile devices (e.g., smart-
phones and smartwatches) have given rise to a novel sens-

ing paradigm, namely mobile crowdsensing. With a rich set of
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on-board powerful sensors (e.g., camera, GPS, and biomedical
sensor), as well as the advanced communication technologies
(e.g., 4G/5G, WiFi, and Bluetooth), mobile users are able to
jointly participate in crowdsensing tasks and flexibly collect
sensory data from their nearby environments or activities. Due
to many inherent benefits such as lightweight deployment cost,
rich sensing resources, and large-scale spatial-temporal cover-
age, a variety of mobile crowdsensing applications have been
fostered, which spans different domains including environmen-
tal monitoring, business, smart transportation, and assistive
healthcare ([9], [10], [24], [29]).

Despite these promising applications, three key issues still
exist in mobile crowdsensing that might critically hinder the
large-scale and successful deployment. First, the sensory data
provided by participants with diverse reliabilities may not be
all trustworthy due to various objective factors (e.g., poor
sensor quality and ambient noise) or subjective reasons
(e.g., malicious intent), which may degrade the data quality
and discourage the involvement of data collectors who request
the sensory data. Therefore, from the perspective of system,
it is necessary to improve the data trustworthiness/quality.
Second, the crowdsensing data are usually tagged with spatial
and temporal information about the sensing context and may
reveal user’s sensitive information (e.g., location and health
status [3]). More severely, private information may be inferred
if some data are linked. For example, the frequent participation
of movie rating-related tasks may disclose the user’s interest
in a specific type of movies. The continuous observation of
sensory data contributed by the same participant may be used
to track the user’s trajectory. Hence, from the perspective of
users, there is an inherent necessity to provide them with a
privacy-aware mobile crowdsensing scheme. Third, inevitably,
participants need to consume time and their own resources
such as battery and computing power for data sensing and
upload. Considering these consumptions, a user would be
unwilling to join the sensing tasks unless favorable incentives
(e.g., rewards) are provided as compensation. Essentially,
designing reasonable incentive mechanisms can achieve a win-
win situation for both the system and users, in which adequate
data are obtained for better availability of the system, and users
will earn a number of rewards.

Many research efforts have been devoted to data trust-
worthiness, privacy preservation, and incentive design for
mobile crowdsensing, such as trust/reputation evaluation mod-
els designed to evaluate the data trustworthiness ([14], [28]),
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privacy protection solutions proposed for anonymous data col-
lection ([11], [25], [35], [38]), and various incentive schemes
([40], [41], [44]). However, these solutions only address part
of these three issues separately, which fail to capture the inner-
relationship among these issues and address all of them col-
lectively. Although in recent researches, anonymous reputation
systems ([15], [26], [27], [34]) and privacy-aware incentives
([21], [22], [31], [36], [42], [43]) were tentatively studied,
they still have many limitations such as the dependence on a
trusted third party (TTP), suffering from heavy computation
cost, limited to the single-report task scenario, and ignorance
of incentive fairness. More importantly, they do not indeed
consider these issues in a holistic perspective.

Addressing these above issues simultaneously is a nontrivial
challenge, as both conflict and correlation coexist among them.
For example, there is a conflict between data trustworthiness
and user privacy, as some selfish or malicious users may
anonymously report falsified or invalid sensory data. Similarly,
potential abuse attacks may occur in privacy-aware incentives,
in which malicious users may want to earn more rewards by
anonymously submitting redundant reports or stealing others’
credentials. Hence, providing privacy protection may lead to
anonymity abuse, making it difficult to guarantee the data
trustworthiness and track the user’s accountability. On the
other hand, data trustworthiness has close correlations with
incentives. Specifically, users should be rewarded fairly based
on their data reliability, and in turn we should stimulate users
to contribute more reliable data. However, it is also challenging
to quantify user’s contribution in a comprehensive and privacy-
aware manner, with fair incentive provision.

In this paper, we propose a scheme enabling data trust-
worthiness and user privacy for general multi-report1 mobile
crowdsensing, in which fair incentives are provided to motivate
users’ reliable contributions. Compared with our previous
work PTISense [39], we further release the strong assumption
of a trusted pseudonym authority and carefully elaborate an
enhanced solution which is resilient against collusion attacks
between any two honest-but-curious entities under a non-TTP
model. Moreover, we also specify the detailed pseudonym
generation process and present how to evict malicious users.
The main contributions are summarized as follows.

• We present a novel mobile crowdsensing system model
by introducing two honest-but-curious entities: the group
manager and the pseudonym authority, which separate
the duty of each entity to ease the server-side burden
and serves as the foundation to achieve anonymous user
authentication and pseudonym-based data submission.

• Leveraging (partially) blind signature, we propose a
trustworthy and privacy-aware scheme by integrating an
anonymous reputation model. Particularly, we embed
the anonymous reputation level/feedback into tokens to
achieve privacy-aware trust evaluation and reputation
update at the server and the group manager, respectively.
In the entire crowdsensing process, besides anonymous
identity verification via group signature, blind signature-
based protocols are designed to enable user’s anonymous

1The task requires each participant to submit multiple data.

authorization verification at the untrusted pseudonym
authority, and to make data unlinkable to individual
entity or even possible colluding entities. Based on the
data quality and feedback, a fair reward allocation method
is devised to stimulate user’s reliable participation.

• To prevent malicious users from abusing pseudonyms,
we propose a protocol to limit the number of pseudonyms
issued to each user and design a certificate-based
pseudonym generation method via hash chain. Addi-
tionally, we provide two flexible revocation methods to
evict malicious users from tasks or the whole system,
depending on their specific misbehaviors.

The remainder of this paper is organized as follows.
In Section II, we review related work. In Section III, we intro-
duce preliminaries. We then present our proposed scheme in
Section IV. The security analysis is presented in Section V and
performance evaluations are presented in Section VI. Finally,
Section VII concludes this paper.

II. RELATED WORK

A. Data Trustworthiness

To improve the quality of sensory data in mobile crowd-
sensing, researchers focused on how to evaluate sensory data
and maintain the user’s reputation. Huang et al. [14] pro-
posed a reputation system by employing Gomeprtz function
to compute the participant’s reputation score. Taking the user
privacy requirement into consideration, in [15], each user
was assigned multiple pseudonyms and relied on a TTP to
transform the reputation among user’s multiple pseudonyms.
Leveraging the blind signature and cloaking techniques, a sim-
ilar solution IncogniSense [6] was proposed. Without using
a TTP, Wang et al. [34] proposed ARTSense to solve the
problem of “trust without identity”. To further address the
issues of long time delay and high bandwidth, Ma et al. [26]
proposed two privacy-aware reputation management schemes
in the edge computing enhanced mobile sensing. Nevertheless,
no incentives are provided in these solutions.

Recently, Gisdakis et al. [13] proposed a secure and
accountable mobile sensing system that preserves the user
privacy and provides incentives based on the Shapley value. [2]
addressed the conflict between user privacy and data accu-
racy maximization. They proposed a coalition strategy to
allow users to cooperate for k-anonymity protection. Besides
additional user-side communication cost, the privacy of a
user would be revealed once one of the cooperative users
is compromised. We note that the above two schemes all
assume the existence of an available evaluation scheme for
anonymous users and lack a detailed illustration of how to
seamlessly integrate it into the privacy-aware crowdsensing
system, especially suitable for the multi-report scenario.

B. Privacy Preservation

Different privacy protection techniques were proposed to
protect the user’s location privacy, identity privacy, and data
privacy. For example, k-anonymity technique [25] was widely
used in location-based mobile sensing. For identity privacy,
sensing reports were anonymously submitted to the server
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with pseudonyms ([11], [42]) rather than their real identities.
Moreover, cryptographic solutions ([31], [38]) were proposed
to ensure data confidentiality.

To achieve anonymity and unlinkability, AnonySense [30]
was proposed for mobile crowdsensing systems, in which
mix network and k-anonymity technology were adopted to
anonymize the communication and de-associate the sensing
data from their sources. However, this scheme lacks provable
privacy guarantees. In [8], an enhanced privacy-aware method
PEPSI was proposed to protect the privacy of participants and
data consumers. Besides privacy-aware data sensing, several
works addressed the privacy-aware task allocation ([35], [38]),
data aggregation ([18], [38], [45]), data publishing ([33], [37])
in mobile crowdsensing.

C. Incentive Provision

Incentive mechanisms are designed to encourage user’s
participation, either with monetary or non-monetary strategies.
Auction-based incentives ([40], [41], [44]) have been widely
studied in mobile crowdsensing, which focus on how to select
participating users (i.e., winners) and determine the payment.
Winner selection and payment determination are mostly based
on each user’s bid information, regardless of the actual data
quality. It is not truly fair since the data quality of each winner
may not be at the same level. Moreover, users in these schemes
are considered selfish but rational, which is reasonable but
neglects the user’s malicious intent (e.g., submit low-quality
data). For improvements, some quality-aware incentives have
been proposed ([2], [16], [20], [32]), which incorporates the
data quality into different auction models. Besides auction
model, Gao et al. [12] formulated a mathematical model to
evaluate the data quality which needs to be maximized under a
limited task budget. Leveraging Sharply value, [19] proposed
a fair reputation-based incentive mechanism to allocate the
task budget. Despite its availability, it requires users to form
coalitions, hence induces extra communication cost. From the
perspective of system, these quality-aware incentives fail to
give rigid punishment (e.g., remove them from the system)
to the malicious users. None of the above incentives have
carefully considered the user’s privacy requirements.

Some privacy-aware incentives have been proposed for
mobile crowdsensing. One research line focuses on achiev-
ing user anonymity when performing tasks and earning
rewards. Zhang et al. [43] first solved this problem by
using pseudonym, cryptography, and hash function. They
concentrated on the user’s identity privacy while ignoring the
data linkage privacy. The same problem also exists in [31].
Li et al. [21], [22] have made great contributions to design
privacy-aware incentives, in which [22] fits for the single-
report tasks while the two schemes proposed in [21] are more
general to support both single-report and multi-report tasks.
Specifically, the first scheme relies on a TTP while the second
solution adopts the blind signature and commitment techniques
to preserve privacy. Despite its effectiveness, the TTP-free
scheme bears large user-side computation cost. Since the
server allocates each user the same number of rewards, data
reliability and incentive fairness are not really taken into
account. Another research line focuses on protecting user’s bid

Fig. 1. System architecture. The label 2 represents Step 2, and the
label 1-2 represents the second subphase in Step 1. The other labels represent
the corresponding steps or subphases.

privacy in auction-based incentives ([17], [23], [36]), in which
user anonymity, data linkage, and the data trustworthiness are
not covered.

In this paper, instead of designing auction-based
privacy/quality-aware incentives, we follow the research line
of enabling user privacy (e.g., identity and data linkage) and
data reliability throughout the whole mobile crowdsensing,
simultaneously offering a fair budget allocation strategy
to incentivize user’s high-quality contribution. Particularly,
we also aim to provide effective countermeasures to deal
with malicious users and possible collusion attacks under a
TTP-free model, which solves the critical limitations in [39].

III. PRELIMINARIES

A. System Architecture

The mobile crowdsensing system considered in this paper
(refer to Fig. 1 on the following page) consists of a server,
a group manager (GM), a pseudonym authority (PA), multiple
data collectors (DCs), and a set of participants/users (we use
participants and users interchangeably).

1) Server publishes tasks received from the DCs and
assigns them to a set of qualified users. After collecting
the sensory data from the users, the server evaluates the
data and allocates rewards to the users according to a
certain strategy. Meanwhile, a feedback is returned to
the users for later reputation updates.

2) GM is in charge of registering participants, gener-
ating task request tokens, and managing reputation
database.

3) PA is responsible for issuing a certain number of valid
pseudonyms and corresponding certificates to the autho-
rized participants for the reports and receipts submission.

4) DCs create sensing tasks by specifying some require-
ments, such as the type of sensor reading, the sensing
time/location, number of data reports required from each
participant, the minimum reputation level, the reward
budget, and the task lifetime.
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5) Participants are mobile users carrying with them
sensing-capable mobile devices. They register them-
selves with the GM and collect sensory data for the
requested tasks. All data are then transmitted to the
server via cellular networks or WiFi.

From a high-level perspective, the DCs first create sensing
tasks and then forward them to the servers. Next, the server
groups all received tasks and publishes them to the GM and
participants in the vicinity of area of interest (Step 1). Since
the privacy and reputation of the DCs are not under our
consideration, in this paper, we consider the DCs and the
server the same party for simplicity.

To perform a task, a user must register with the GM and
obtain a task request token (Step 2). After that, the user
submits the task request token and a group signature to the
server for anonymous authentication of user identity and task
legitimacy. The server will assign the corresponding task to
the user if the authentication succeeds (Step 3). Only when
assigned, the user can request a certain number of pseudonyms
from the PA, then anonymously submits the reports to the
server (Step 4). For each report, the server evaluates its
reliability and issues a receipt to the user, meanwhile the
valid data reports are returned to the DCs (Step 5). Finally,
the user can submit all his/her collected receipts to the server
for rewards redemption before a deadline. Meanwhile, the user
also obtains a reputation update token from the server, which
is used for reputation update at the GM (Step 6).

B. Threat Model

Threats to Trustworthiness. Unauthenticated users may sub-
mit forged data to the server. For legitimate users, they may
also exhibit malicious behaviors, including submitting false
data intentionally or submitting low-quality/inaccurate data
due to the malfunction or low quality of sensors. Both false
data and very low-quality data (e.g., below a trust threshold)
are considered invalid. Furthermore, multiple users may collu-
sively send false data to destroy the crowdsensing applications.
As in [21], [34], we consider the majority of the data valid
and accurate. The robustness of our scheme against malicious
users will be analyzed in Section VI-B.2.

Threats to Privacy. When requesting a task credential
(i.e., task request token), the curious GM may want to know
which tasks the user is interested in. During the pseudonym
request phase, the PA may infer the relationship between the
real identity of a user and his/her joined tasks. Moreover, when
reporting data, the server may be curious about which tasks
the user has performed and which reports are submitted. In a
nutshell, the GM, the server, and the PA may try to infer the
correlations between users and their private information.

Threats to Incentives. Leveraging the privacy preservation,
greedy users may abuse anonymity and try to earn more
rewards by submitting redundant reports for each task. Selfish
users may want to earn rewards from a task without contribut-
ing any data or submitting insufficient reports as required.
In addition, some malicious users may try to use tokens of
different tasks interchangeably, or use a token twice (double-
spending problem). More severely, an adversary may usurp
others’ tokens by compromising them.

In this paper, we make the following assumptions.
• We assume that the communications between users and

the server are anonymized by Mix Networks [7] or Onion
Routing (unidentified in the network layer).

• We assume that the GM, the server, and the PA are
all “honest-but-curious” (i.e., semi-honest), which means
that they will conform to the designated protocols, but
are curious and may try to infer more privacy of the
users. In reality, collusions may exist but would degrade
the reputation of the collusive entities. In this paper,
we assume that there may be collusions between any
two of the semi-honest entities, whereas, the three entities
would not collude due to the reputation concerns.

C. Design Goals

The following are our design requirements:
R1 Data Trustworthiness. To resist against forged data from

the external attackers, all participants should be authenticated
before task assignment. In addition, it is necessary to establish
anonymous reputation assessment and management schemes
to mitigate data trustworthiness threats from internal attackers.
Specifically, tasks requested by low-reputation participants are
supposed to be rejected by the server. Reports with very
low trust values should be detected and removed. Moreover,
it is infeasible for the greedy users to submit redundant
reports.

R2 Privacy Protection: Given a user, the adversaries
cannot infer if the user has requested/accepted a specific
task, or whether two tasks have been performed by the same
user. When reporting data, the sensing reports should also
be unlinkable, i.e., adversaries cannot link any report to its
contributor, and link multiple reports submitted by the same
user. For reward redemption, the linkage between rewards
a user earns and the data submitted by the user should be
unknown.

R3 Fairness: Users should be rewarded fairly according to a
certain reward allocation strategy in a privacy-preserving man-
ner. Misbehaving users cannot increase their rewards by abus-
ing pseudonyms, double-spending, or stealing tokens. Those
having made no contributions, submitting invalid data, or even
not assigned tasks will earn nothing.

D. Primitives

Group Signature [4]. A group signature scheme is a cryp-
tographic primitive for anonymous identity authentications.
Generally, this scheme consists of five algorithms. The key
generation algorithm KeyGen() outputs a group public key
vk and a group secret key gsk. If a user Pi wants to join the
group, he/she will perform a Join protocol with the GM. Then
Pi obtains a member secret key mski, and the GM obtains
some relevant information Yi from Pi which will be included
into gsk. To sign a message m, Pi runs Sign(mski,m) and
obtains σ. Anyone obtaining vk can verify σ by performing
Verify(vk,m, σ). If necessary, the GM can identify and trace
the signer with Open(gsk,m, σ). Finally, using algorithm
Revoke(gsk, Yi), the member with Yi can be evicted from
the group. Group signature has two properties: anonymity and
traceability, which captures our security requirements.
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TABLE I

NOTATION SETTINGS

Blind Signature and Partially Blind Signature. Blind sig-
nature (BS) [5] enables a user to obtain a signature from a
signer on his/her private message m without disclosing m to
the signer. Take the blind RSA signature as an example (used
in this paper), suppose that the public-private keys of the signer
are (e,Q) and (d,Q), where Q is the public modulo. The user
first chooses a blinding factor b relatively prime to Q, and
computes m�=m · bemod Q. The signer signs on m� with d.
With the signature {m�}d, the user can obtain the real signature
on m by removing b as {m}d = ({m�}d · b−1)mod Q.
Besides blindness and unlinkability, the user cannot forge a
valid signature from {m�}d for another message. Partially
blind signature (PBS) [1] is similar to BS except for some
common/public information added in the signature.

Trust and Reputation. As in [34], we quantify the reliabili-
ties of reports and users with trust and reputation, respectively.
Particularly, reputation level is introduced for anonymous
trust evaluation, which is a discrete approximation deduced
from a user’s reputation. Users with different reputations may
demonstrate the same reputation level, hence the server cannot
differentiate users based on their reputation levels.

In Section IV, we will show how to adopt group signature
and (partially) BS for privacy-aware authentication, data sub-
mission, and reward allocation. Moreover, trust assessment and
reputation update are to be conducted based on the anonymous
sensing reports. For ease of presentation, the notations used
in this paper are listed in Table I.

IV. THE EPTSENSE SCHEME

In this section, we present our scheme EPTSense,
an Enhanced scheme achieving the goals on “Privacy Preser-
vation” and “Data Trustworthiness”2 for mobile crowd-
Sensing. Compared with our prior scheme PTISense [39],
the key issues to be addressed are three-folded. The first
is how to deal with the possible collusion attacks between
any two honest-but-curious entities. The second is to loose
the strong assumption about a trusted PA. The last is to
specify a pseudonym generation method with lightweight
cost at the PA. Note that, we use “enhanced” to emphasize

2In essence, the goal of achieving fair incentives is to stimulate user’s
reliable and high-quality contribution, which also serves for the data trust-
worthiness. Therefore, we omit the incentive fairness in the description.

the security improvement instead of the efficiency. Before
describing EPTSense, we first give an overview and the basic
idea of our approach.

A. Overview

Our entire scheme consists of seven required phases and
one alternative phase. First, the system is initialized with
key distribution (Section IV-B). Then each user registers with
the GM and gets the member secret key and task request
token (Section IV-C). Before allocating tasks, the server
anonymously verifies the task request token and returns
approval or rejection messages to the user (Section IV-D).
Only users who receive the approval message are able to
request a certain number of pseudonyms from the PA, with
which the sensing reports can be submitted anonymously
(Section IV-E). For each report received, the server will
evaluate its trust and issue a feedback-embedded receipt
(Section IV-F). After collecting all receipts, users are able to
redeem rewards from the server in a fair way. Meanwhile,
a reputation update token is also returned to the user for
reputation update at the GM (Section IV-G). During the whole
process, if the reputation of a user or the trust value of a
submitted report does not satisfy the minimum requirement,
the corresponding user will be removed from the system or the
reports submitted by the same user will be revealed and tagged
as invalid (Section IV-H).

Particularly, to tackle the possible collusions between the
GM and the server in PTISense, leveraging the BS technology,
we propose privacy-aware protocols to let the user and the GM
(server, respectively) both involved in creating the task request
(reputation update, respectively) tokens, instead of allowing
the GM or the server to unilaterally sign on the identity-
related information. To protect the privacy from the semi-
honest PA, our basic idea is to enable the PA to anonymously
verify the task authorization of a requested user, meanwhile
not sacrificing the task privacy. Moreover, we devise a efficient
pseudonym generation method based on the hash chain, which
lowers the PA’s pseudonym storage cost to a constant.

B. Initialization

In this phase, a certificate authority first delivers a public-
private key pair to the server, the GM, and the PA, respectively.
The GM performs KeyGen() to generate a pair of group
public-private keys (vk, gsk).

The server is responsible for grouping all tasks received
from the DCs (e.g., indexed 1, 2, . . . ,M in the order of their
reception time), and publishes these tasks to the mobile users
and the GM. To improve the data trustworthiness, the server
also presets two parameters: a reputation threshold � ∈ [0, 1]
and a trust threshold δ ∈ [0, 1], below which the user and the
data report are considered malicious and invalid, respectively.

C. Participant Registration

If a participant Pi wants to join a task for the first time,
he/she must register with the GM and obtain mski through an
interactive Join protocol [4] supporting dynamic update.
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Fig. 2. The interactive process for request token generation.

To join a task Tj , Pi needs to send some private information
and acquire a task request token from the GM. As shown
in Fig. 2 (on the following page), first, to protect the user’s task
preferences, the requested task identifier (i.e., ID) is blinded
using the BS. Specifically, Pi chooses a nonce b relatively
prime to the GM’s public modulus Q. Then he/she computes
the blinded task BTj = Tj · bpkGMmod Q. Meanwhile, Pi
chooses another blinding factor b� which is shared with the
GM to construct a blind commitment h2

i (explained later).
In a Task Token Request (TTR), Pi sends �BTj , b�� to the
GM with his/her real identity.

The GM maintains a reputation table for each member with
an initial reputation. After receiving the TTR from Pi, the GM
first derives a hash value h1

i = H(Pi|R(Pi)|BTj) by binding
the user’s identity Pi, his/her newest reputation R(Pi), and
the blinded task ID BTj . Then the GM computes the user’s
blind identity BPi = Pi · b�pkGM mod Q using b�, and derives
another hash value h2

i by binding BPj and BTj (i.e., h2
i =

H(BPi|BTj)), so that the PA can later anonymously validate
that Pi is really assigned task Tj . Finally, the GM returns
�{h1

i |h2
i }skGM , {BTj}skGM , {L(Pi)}skGM � to Pi, in which

L(Pi) is the reputation level of Pi.
On the user side, Pi extracts h1

i , h
2
i and removes b

from {BT }skGM to obtain {Tj}skGM , then he/she com-
putes h3

i = H(h2
i |1) and chooses two blinding factors b1,

b2 to blind h1
i and h3

i , respectively (the blinded values
are denoted as BH1

i and BH3
i ). After that, Pi computes

BH1
i |BH3

i |{Tj}skGM |L(Pi)skGM which is blinded using
another blinding factor b3 (the blinded value is denoted by
Bτ ). Through a round of interaction with the GM, Pi removes
b3 and is able to obtain the task request token for Tj as follows.

τ ji = {BH1
i |BH3

i |{Tj}skGM |L(Pi)skGM }skGM . (1)

Note that, L(Pi) is included in the token so that Pi can
demonstrate his/her reliability to the server without any linkage
to his/her identity. On the other hand, the BS technique applied
to the token generation ensures that the GM is oblivious to the
task request token issued to a known user. In this case, even
if the request token is exposed to the server who may collude
with the GM, both entities still cannot infer the relationship
between a user and his/her requested tasks.

D. Participant Authentication and Task Assignment

With the desired task request token τ ji and mski, Pi can
send a task request and authenticate himself/herself to the

server anonymously. Specifically, Pi chooses a random number
r and generates a group signature on r (as the message) with
his/her member secret key mski, which is sent along with r,
τ ji , and Tj . Let p0

i denote a random pseudonym3 generated by
Pi, then the anonymous task request message �i is as follows:

Pi → server : �i=�p0
i , Tj, {r}mski , r, τ

j
i �. (2)

Upon receiving�i, based on r and vk, the server can verify the
group signature anonymously. If it succeeds, Pi is considered
a legitimate member. To further verify τ ji , the server performs
the following steps:

1) It verifies the authenticity of τ ji by checking the signa-
ture of the GM with pkGM . This ensures that no one
can forge a valid request token.

2) It verifies {Tj}skGM and ensures that τ ji is indeed issued
for the task.

If all steps succeed and τ ji has not been used before, τ ji
is considered authentic and correct. Next, the server extracts
L(Pi) from τ ji and determines whether to approve the request
according to the task requirements. If approved, τ ji is stored
and tagged as approved to prevent double-spending problem.
Additionally, the server returns an approval message Ai as

server → Pi :
Ai=�{BH1

i }sks , {BH3
i , nj + 1}sks , {Tj|L(Pi)}sks�, (3)

where {BH3
i , nj + 1}sks is the server’s PBS and nj + 1 is

the common knowledge known by the user and the server,
{Tj|L(Pi)}sks is regarded as an anonymous reputation cer-
tificate (ARC) [34], demonstrating Pi’s reputation level when
performing Tj . After receiving Ai, Pi removes b1, b3 and gets
{h1

i }sks , {h3
i , nj + 1}sks (for task authorization verification).

On the contrary, if the server rejects the request, a rejection
message {BH1

i , 0}sks is returned to Pi, in which b1 can be
removed to derive {h1

i , 0}sks as the request feedback (to be
described in Section IV-G).

E. Pseudonym Request and Report Submission

Before report submission, Pi needs to get nj + 1
pseudonyms and the corresponding certificates from the PA,
where nj is the number of reports required from each user.
Specifically, Pi first generates nj + 1 public-private key pairs
{(pkki , skki )}nj+1

k=1 . To protect the identity and task privacy,
Pi uses the blinded identity BPi and the blinded task ID
BTj to request pseudonyms. Additionally, to enable the PA
to generate certificates based on the task lifetime without
revealing the specific task ID, Pi also selects a start time ts
and an end time te that are very close to the start and end
time of Tj , respectively. Finally, a pseudonym request is sent
to the PA in the form �BPi, ts, te, nj + 1, {pkki }nj+1

k=1 , BTj ,
{h3

i , nj + 1}sks�.
Upon reception, the PA first verifies the PBS {h3

i , nj +
1}sks , then it verifies if Pi is really assigned Tj by checking

H(H(BPi|BTj)|1) ?= h3
i . If both hold, the PA prepares

nj +1 pseudonyms and certificates, as shown in Algorithm 1.

3Here the pseudonym is not generated by TPA for extra communication
cost. Anyone can request tasks with a random pseudonym.
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Algorithm 1 Pseudonym and Certificate Generation

Input: BPi, ts, te, nj + 1, Tj , {pkki }nj+1
k=1 .

Output: Pseudonyms {pki }nj+1
k=1 and certificates

{cki }nj+1
k=1 .

1 // PA;
2 Choose two secrets s1i , s

2
i ;

3 Δt = te−ts
nj

;
4 for k = 1 to nj do
5 Sk(i,1) = Hk(s1i ), S

k
(i,2) = Hk(s2i );

6 pki = H(Sk(i,1)|Sk(i,2)|k);
7 tk = tc + Δt · k;
8 cki = {pki |pkki |tk|Tj}skP A ;

9 p
nj+1
i = H(Snj+1

(i,1) |S
nj+1

(i,2) |nj + 1);
10 tnj+1 = tnj + Δt;
11 c

nj+1
i = {pnj+1

i |pknj+1
i |tnj+1|Tj}skP A ;

12 Keep secret record �BPi, s1i , s2i �;

First, the PA chooses two secrets s1i , s
2
i , and equally

divides the appropriate lifetime of Tj into nj time intervals
(Lines 2-3, each interval is Δt). Note that time division is
to guarantee that each pseudonym/certificate is only valid
in a time interval such that malicious users cannot launch
Sybil attack and use expired pseudonym/certificate. For the
k-th pseudonym, the PA derives its secrets using hash chain
(Line 5). With hashed secrets, the k-th pseudonym of Pi
(i.e., pki ) is constructed as pki =H(Sk(i,1)|Sk(i,2)|k). After that,
the PA generates the corresponding certificate by signature
(pkki is embedded in the certificate for data integrity verifica-
tion). For the (nj + 1)-th pseudonym p

nj+1
i , it is generated

in a similar way and is used to submit receipts after task
completion. Finally, the PA only needs to store one information
record as �BPi, s1i , s2i �, regardless of nj . Therefore, EPTSense
significantly saves the PA’s storage cost, as PTISense needs to
keep nj + 1 pseudonyms for each user.

In our scheme, only with valid pseudonyms/certificates
issued by the PA, Pi can anonymously and successfully
submit the sensing reports for Tj . Otherwise, Pi is regarded
unauthorized if he/she uses randomly generated pseudonyms.
Specifically, after receiving nj+1 pseudonyms and certificates,
Pi submits each report Rk(k = 1, 2, . . . , nj) to the server as

Pi→server :Rk=�pki , cki , Tj ,{Tj|L(Pi)}sks ,D
k
i , σskk

i
�, (4)

where Dk
i is the kth set of sensing data items, σskk

i
is Pi’s

signature on all the remaining report items and the correspond-
ing verification public key is embedded in cki . Besides data
integrity, the signature also ensures that the pseudonym and
certificate are in accord with the signer. Moreover, the ARC
is necessarily included to assess the report’s trust.

F. Trust Evaluation and Receipt Generation

For each sensing report Rk received, the server performs:

1) It checks the validity of pki by verifying cki and compar-
ing pki and Tj with those included in cki . Moreover, the

server checks if the current time is less than tk to ensure
the pseudonym validity.

2) It validates that the ARC has been signed by itself and
the task ID included is consistent with Tj .

If both checks are passed, the server continues to assess the
trust of each sensing report. In this paper, we adopt the trust
assessment model in [34] which evaluates the sensory data in
a comprehensive aspects, including the anonymous reputation
level L(Pi), some privacy-aware contextual factors (e.g., time
and location), and the similarity of data from multiple users.
First, based on L(Pi) and the contextual factors, the basic trust
of each report Rk is computed. Then, the final trust, denoted
by TF (Rk), is derived by combining with the data similarity.
Instead of using the single server only [34], we evaluate the
report trust and user’s reputation at the server and the GM,
respectively. The advantage is that it eases the server-side
heavy burden and reduces the user’s information known by a
single party. Additionally, in our multi-report scenario, reports
submitted to Tj are further divided into nj sets before data
similarity computation. Due to space limitation, we omit the
computation details and refer readers to [34] for detailed data
similarity computation and trust evaluation.

After deriving the final trust, the server compares TF (Rk)
with the predefined trust threshold δ, if TF (Rk) ≥ δ, the server
accepts it and computes a feedback level lf (Rk) based on
TF (Rk)−L(Pi). The key principle is that a positive feedback
level is set if TF (Rk) ≥ L(Pi) and a negative feedback is
set otherwise. Additionally, we set the same feedback level
for two reports with similar gaps, such that the server cannot
link lf (Rk) to the report when later submitting receipts.
If TF (Rk) < δ, Rk is considered invalid and will be rejected.

For each report Rk accepted, the server issues a receipt
RRk

to Pi, which can be later used by Pi to redeem
rewards from the server. Particularly, to achieve the dis-
tinguishability and unlinkability of receipts, we adopt the
PBS technology, in which the task ID is the common infor-
mation shared by the user and the server. Different from
PTISense, we do not embed the identity-relevant information
(i.e., h1

i ) into the receipt identifier (i.e., ID) in this step,
in case of possible privacy disclosure from h1

i when collusion
exists. Instead, Pi chooses a nonce ρ and computes αk =
H(ρ|Tj|k), k = 1, . . . , nj as the receipt ID, then obtains
the PBS {αk, Tj}sks from the server. Meanwhile, the server
sends {{Tj|L(Pi)}sks |[lf (Rk)]pks}sks to Pi. Based on this,
the receipt RRk

is as follows:

server → Pi :
RRk

=�Tj , {αk, Tj}sks , {{Tj|L(Pi)}sks |[lf (Rk)]pks}sks�.
(5)

Note that the feedback level lf (Rk) is encrypted with pks
so that Pi cannot identify if it is negative or positive.

G. Participant Remuneration and Reputation Update

Upon reaching the end time of Tj (denoted as t�e), each user
can submit all receipts he/she obtained for reward redemption
before a deadline. In this paper, we set the time interval
for receipt submission to be the same as that between two
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consecutive report submissions. Specifically, Pi sends the
following message with pseudonym p

nj+1
i before time t�e+Δt.

Pi → server :
�pnj+1
i , c

nj+1
i , ρ, (αk, RRk

)k=1,...,nj , σsknj+1
i

�. (6)

Subsequently, the server does some verifications:

1) It verifies the validity of pnj+1
i and {αk, Tj}sks , which

ensures that Pi is authorized and has submitted nj
reports for Tj .

2) It checks each αk = H(ρ|Tj |k) to ensure the receipt is
really issued to Pi. Anyone who steals other’s receipts
(without ρ) cannot pass the verification.

If both checks succeed, the server stores and invalidates
αk to avoid receipt reuse. Then, it decrypts [lf (Rk)]pks(k =
1, 2, . . . , nj) and gets lf (Rk), based on which the average
feedback value can be computed as lf =

�nj

k=1 lf (Rk)/nj .
Furthermore, with L(Pi), the approximate average final trust
of reports can be obtained by calculating TF = lf + L(Pi).

For incentive fairness, in the premise of the same number of
contributions, the basic principle is that users with higher trust
values should earn more rewards than those with lower trust
values. Moreover, it is more suitable to reward the positive-
feedback and negative-feedback users with different allocation
strategies. Let P be the set of all authorized users, and SP ,
SN be the set of users with positive and negative average
feedback, respectively. Given the task budget Bj , the reward
distributed to each user Pi is computed as follows:

ri=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TF (Pi, Tj)�
Pk∈P TF (Pk, Tj)

·Bj · elf (Pi,Tj)·ψ, Pi ∈ SN

TF (Pi, Tj)�
Pk∈P TF (Pk, Tj)

·Bj , Pi ∈ SP
(7)

where ψ (ψ > 1) is an amplification factor to increase the
effect of the negative feedback on the reward allocation. Essen-
tially, the negative-feedback users would obtain fewer rewards
than their real contributions (as punishment). As TF (Pi, Tj)
decreases, the reward reduces accordingly, indicating that users
with higher negative feedback will get lower payments.

Note that, submitting insufficient receipts inadvertently indi-
cates the existence of invalid reports with a high possibility,
as no receipts are issued for invalid reports. In this case,
the server computes the maximum reputation feedback level as
δ−L(Pi) for each unreceived receipt. Intuitively, the addition
of δ−L(Pi) for unreceived receipts would lower the average
feedback of received receipts. If the average feedback of
nj receipts is positive, then Pi is considered a positive-
feedback user. Otherwise, the server tags Pi with negative
feedback. In both cases, the reward allocation also follows
Eq. (7). For selfish users or malicious users who intentionally
submit partial receipts with possible high feedback levels,
those unreceived receipts are still assigned the same feedback
level (negative with a high possibility) as we describe above.
Hence, no matter behaving inadvertently or intentionally, users
cannot benefit from submitting insufficient receipts.

Besides the rewards, the server also returns Pi a reputation
update token UTj for Tj . Unlike PTISense which allows

the server to link the update token with the user’s identity-
related information h1

i (the user-task relationship would be
disclosed if collusion exists), we generate UTj in a privacy-
aware manner. Specifically, the server first sends a message
�Tj , [lf ]pkGM , {[lf ]pkGM }sks� to Pi. To embed the identity-
related information into UTj while keeping the token unlink-
able, Pi computes H(h1

i |BTj|[lf ]pkGM ) and uses a blinding
factor to hide its real value. Through another round of inter-
action with the server, Pi removes the blind factor and is able
to obtain the reputation update token UTj as follows.

UTj ={H(h1
i |BTj |[lf ]pkGM )}sks . (8)

Note that, given UTj , the server is oblivious to which
task/receipts the token issued for. Therefore, even though there
is collusion between the GM and the server, Pi’s identity-task
relationship is still unrevealed.

No matter whether Pi is approved to perform tasks in
the assignment phase, Pi needs to return feedback infor-
mation to the GM for reputation update as long as he/she
requests tasks. Specifically, if assigned, Pi submits �UTj ,
BTj , [lf ]pkGM , {[lf ]pkGM }sks� to the GM with the real
identity. The GM verifies the server’s signature and the
authenticity of [lf ]pkGM . Next, it computes H(H(Pi|
R(Pi)|BTj)|BTj |[lf ]pkGM ) by retrievingR(Pi). If the derived
result equals H(h1

i |BTj|[lf ]pkGM ) in UTj , UTj is considered
valid. After successful verification, the GM decrypts [lf ]pkGM

and updates P �
i s reputation. Moreover, it stores UTj and tags

it as used to prevent token reuse.
On the contrary, if Pi is not authorized to perform Tj , he/she

still needs to return a request feedback Fi to the GM.

Pi → GM : Fi=�Pi, BTj, {h1
i , 0}sks�. (9)

After receiving Fi, the GM verifies the signature {h1
i , 0}sks

and checks if the task request is indeed rejected by comparing
H(H(Pi|R(Pi)|BTj)) with h1

i . In this case, the malicious
participant cannot act as a new user (i.e., with the initial
reputation) once he/she has been assigned a task.

H. Participant Eviction

To deal with malicious users who may submit low-quality
or even invalid reports to degrade the data trustworthiness,
our scheme provides two effective countermeasures to evict
participants from the specific tasks or the system.

Participants with Invalid Data. Some malicious partici-
pants may occasionally submit very low-quality data (lower
than δ) for certain tasks due to their personal skill limitations.
As mentioned in Section IV-F, these very low-quality data are
considered invalid. To deal with these participants, we propose
to evict them from the task once a report is detected invalid.
In other words, the following data submitted for the task by
the same participant is also considered invalid as long as a
report is first evaluated as invalid. Take Pi who participates
in task Tj as an example, Pi submits a data report with
pseudonym pki in Tj’s time interval tk, if the report is detected
invalid, the server will send pki and tk to the PA. Accordingly,
the PA scans each stored secret record �BPj , s1j , s2j�) and
compares the derived k-th pseudonym H(Sk(j,1)|Sk(j,2)|k) with
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Algorithm 2 Revocation of Participants From a Task

Input: pki , tk, �Pj , s1j , s2j�, j = 1, 2, . . .N .
Output: A set of pseudonyms {pli}nj

l=k+1 to be
blacklisted.

1 // PA;
2 for j = 1 to N do
3 Sk(j,1) ← Hk(s1j );
4 Sk(j,2) ← Hk(s2j );
5 if H(Sk(j,1)|Sk(j,2)|k) == pki then
6 Send Sk(j,1) and Sk(j,2) to the server;

7 else

8 Report pki is invalid to the server;

9 // Server;
10 for l = k + 1 to nj do
11 Compute H(Sl−k(j,1)), H(Sl−k(j,2));
12 plj = H(H(Sl−k(j,1))|H(Sl−k(j,2))|l));
13 Blacklist plj;

pki , as shown in Algorithm 2. If they are equal (i.e., j = i),
the PA sends Sk(j,1) and Sk(j,2) to the server. Next, the server
derives the following pseudonyms {plj}nj

l=k+1 to be used by Pi
after tk (Lines 10-13, Algorithm 2), which will be added to the
blacklist and the reports submitted with these pseudonyms are
considered invalid with no need of trust evaluation. In this
case, it is observed that Pi is essentially evicted from Tj
after tk, since he/she cannot receive any receipt regarding Tj .
Compared to eviction from the system, the real identity of Pi
keeps hidden from the GM and the server, and even from the
PA. Hence, even though the server colludes with the PA, they
only know that a set of data are from the same misbehaving
user but not knowing the real identity.

Participants with Very Low-Reputation. When performing
tasks, if Pi frequently submits valid but low-quality data
(i.e., the data trust is higher than δ but may be lower than
the average trust value), or frequently/occasionally submits
invalid data (i.e., the data trust is lower than δ), the reputation
of Pi may be lower than the predefined threshold � at some
time. In these cases, we consider to evict Pi from the system.
Specifically, after successful authentication and verification of
task request token, the server extracts L(Pi) and checks if
L(Pi) < �. If it satisfies the condition, the server will deliver
Pi’s group signature {r}mski to the GM who can open the
signature with gsk and reveal the identity of Pi. Pi will
be added to the blacklist, and he/she cannot obtain any task
request token from the GM, hence fails to take any task.

V. SECURITY ANALYSIS

In this section, we will show that EPTSense can achieve
our defined requirements R1 − R3 on data trustworthiness,
privacy, and incentive fairness.

A. Data Trustworthiness

Requirement 1: Unauthorized users cannot forge and inter-
cept other’s pseudonyms to submit falsified or redundant

reports without being detected. Users are only able to
honestly submit the reputation update information to the
GM. Moreover, misbehaving users will be evicted from a
specific task or the whole system, with their identities unre-
vealed or revealed.

Analysis. If a participant Pi is not authorized to join task
Tj , he/she cannot obtain the approval message Ai, hence fails
to request pseudonyms from the PA. Even if Pi intercepts
an approval message which is sent to another authorized
participant P �

i , he/she cannot pass the verification of the PBS
{h3

i′ , nj + 1}sks and H(H(BPi|BTj)|1) = h3
i′ . Therefore,

the user cannot obtain the valid pseudonyms. Since each
pseudonym is signed by the PA, malicious users cannot forge
a valid pseudonym, which ensures that all sensing reports
received by the server are from the authorized users.

During the reputation update phase, if Pi is authorized,
he/she must submit �UTj , BTj, [lf ]pkGM , {[lf ]pkGM }sks� to the
GM, in which [lf ]pkGM cannot be modified by Pi, otherwise
the signature verification of {[lf ]pkGM }sks will not be passed.
If Pi uses the encrypted average feedback which corresponds
to another task or another user, he/she may be updated with
a lower reputation as Pi is oblivious to the exact value of lf .
Even if Pi steals other’s entire reputation update certificate
including the reputation update token, the encrypted feedback,
and the signature, his/her reputation cannot be successfully
updated due to the hash check in UTj . In other words, Pi
can only use his/her own reputation update token to update
the reputation at the GM after a specific task. On the other
hand, the verification of the PBS {h1

i , 0}sks prevents Pi from
not submitting the reputation update information and always
holding the initial reputation when requesting tasks.

As described in Section IV-H, with the cooperation of the
GM, misbehaving users can be identified and removed from
the system if their reputation is less than �. Additionally, with
the cooperation of the PA, users with invalid data will be
detected and removed from the corresponding task by the
server. In our scheme, all pseudonyms would be revealed to the
server once the user maliciously submits a report whose trust
is lower than δ. However, the real identities of these malicious
users keep unknown to the server and the PA. Even though
the server maliciously requests all pseudonyms of a certain
user, it cannot infer the real identity of these pseudonyms and
cannot correlate the same user joining different tasks. Overall,
our two eviction methods ensure that all malicious users and
low-quality reports are detected and removed.

B. Privacy Preservation

Requirement 2: The adversaries can neither link a user’s
identity to his/her requested tasks (or submitted reports) nor
link multiple tasks (or reports) requested (or contributed) by
the same user, as long as the user is well behaved and the
GM, the server, and the PA do not collude simultaneously.

Analysis: In the registration phase, the user’s real identity
is included in the TTR, but the requested task ID is blinded
with b. Given two different tasks, the GM cannot identify
if the two tasks are requested by the same user. In the task
assignment phase, the user can get authenticated anonymously
via group signature. Although the task ID is disclosed to
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TABLE II

COMPUTATION, COMMUNICATION AND STORAGE COST FOR EACH USER PER TASK

the server, it is impossible to link tasks to the user’s real
identity or link multiple tasks requested by the same user.
Even though the GM and the server colludes with each other,
they cannot infer the identity-task relationship through the task
request token, as the BS makes the GM oblivious to which
task request token issued to a certain user.

In the pseudonym request phase, only BPi and BTj are
revealed to the PA, hence the identity-task relationship keeps
hidden, even though the PA colludes with the GM. When
submitting reports, since different users may have the same
reputation level, it is hard for the server to deduce any linkage
between reports from the same L(Pi). Although the PA and the
server may collude with each other to infer if two reports are
sent by the same user, they have to perform extra computations
to derive the pseudonyms issued to the same user, which is
only considered when malicious users exist (i.e., eviction) and
it conflicts with our honest-but-curious model. When issuing
receipts, the server only knows which tasks the receipts issued
for, but cannot link a user to the contributed reports due to
the PBS. Finally, using the BS to generate the update token
provides stronger privacy protection, regardless of the possible
collusions between the GM and the server.

C. Fair and Privacy-Aware Incentives

Requirement 3: A user cannot earn more rewards by using
the receipts of different tasks interchangeably or the receipts of
a task multiple times. If the user is not assigned any task or did
not submit any report, he/she cannot earn any reward.

Analysis: In EPTSense, the receipts issued to a user contain
the identifier committed to a specific task via PBS. Therefore,
malicious users cannot use the receipts inconsistent with task
Ti to redeem rewards from task Ti. For each receipt RRk

received, the server would invalidate its identifier αk, so the
user can only use these receipts for one time.

If the task request is rejected, the user will not receive
{h3

i , nj + 1}sks , hence fails to request pseudonyms from the
PA. In other words, the user cannot submit reports without
valid pseudonyms (or the participant is regarded unauthorized
if using randomly generated pseudonyms). On the other hand,
if the user is assigned a task but does not contribute reports,
he/she would get no receipt from the server. Accordingly,
no reward is allocated to the user.

Requirement 4: A user cannot earn more rewards by forg-
ing receipts or stealing other receipts. The higher-quality data
a user submits, the more rewards he/she will earn. When
redeeming rewards, it is impossible for the server to correlate
the rewards with the reports submitted before.

Analysis: In EPTSense, since each receipt is signed by the
server, others would fail to forge a valid receipt. Malicious
users may steal receipts to earn more rewards. However,
without extra pseudonyms, they cannot submit the stolen
receipts. Although some may want to replace their low-
feedback receipts with that having higher feedback level, they
are faced with the risk of getting fewer rewards or being
detected by the server. The reason is that lf(Rk) is encrypted
by pks, others can neither distinguish the positive feedback
from the negative feedback, nor tell which receipt has a higher
feedback. In the worst case, if the higher-feedback receipts
were usurped, the possible inconsistency of reputation level in
the submitted receipts will reveal his/her malicious behavior.
As shown in (7), a user will earn more rewards if he/she
submits reports with higher-quality. Leveraging the PBS, it is
infeasible to associate the receipts a user receives with the
reports the user has submitted. Since the rewards depend on
the receipts, the server cannot link rewards with the submitted
reports.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of EPTSense.
First, we give a brief complexity analysis. Then, we further
demonstrate the performance through simulation experiments.

A. Complexity Analysis

As summarized in Table II, we compare EPTSense with
PTISense in terms of computation, communication, and stor-
age cost. Particularly, we give a detailed analysis of the com-
putation cost which is mainly induced by the cryptographic
primitives such as modular multiplication (M.M.), modular
exponentiation (M.E.), hash function (H), and operations
for group signature generation and verification (denoted as
GS/SIG and GS/VER, respectively). Note that we set nj = n
for simplicity and use RSA algorithm for digital signature and
encryption, which essentially involves M.E. operations.

1) Computation Cost: We observe that PTISense and
EPTSense show comparable computation cost, with more
computations performed at the user and the GM for EPTSense
but more computations performed at the server for PTISense.
The reason is that the user needs to cooperate with the server
to generate the task request and reputation update tokens
(see Sections IV-C and IV-G). For request token generation,
in EPTSense, the participant needs to compute h3

i locally
and performs extra operations to obtain the server’s blind
signatures on h1

i and h3
i , whereas h3

i is computed by the
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server and there is no need to blind two hashes in PTISense.
For reputation update token generation, the user in EPTSense
also needs to generate partial information locally and obtains
the server’s blind signature. Therefore, EPTSense induces less
computation cost on the server side at the cost of the user’s
overhead.

As to the GM, additional cost comes from the process of
blinding the user’s identity and signing on L(Pi) in EPTSense,
which incurs more computation cost than PTISense. As to
the PA, since how pseudonyms are generated is not speci-
fied in PTISense, we only give the asymptotic computation
complexity O(n). In contrast, EPTSense conducts (n+3)H+
(n + 2)M.E. operations for each user at the PA, including
verifying {h3

i , n+1}sks , checking hash value, and generating
n+ 1 pseudonyms/certificates.

Communication Cost. As shown in Table II, the partic-
ipant, the server, and the PA show the same communica-
tion complexity O(n) for each task in both schemes, as n
reports/receipts are transmitted and n + 1 pseudonyms are
issued to each user per task. In contrast, the GM generates a
task request token for each user requesting a task, and receives
a reputation update token after completing the task. Therefore,
O(1) communication cost is induced at the GM.

Storage Cost. For an authorized user, besides key pairs,
n receipts and a reputation update (task request, respectively)
token are required to be stored for a short time. Therefore,
the user-side storage cost is O(n). Correspondingly, in order
to prevent double-spending problem, the server needs to store a
request token and n receipt identifiers of a user per task. As to
the GM, besides gsk and vk, he/she only stores each user’s real
identity and the current reputation in two schemes. For each
authorized user, the PA stores n+ 1 pseudonyms in PTISense
while only storing �BPi, s1i , s2i � in EPTSense, incurring O(n)
and O(1) storage cost in two schemes, respectively.

B. Implementation

1) Simulation Setup: In our scheme, we used the same
trust and reputation evaluation model, in which we refer
to [34] for the parameter setting, such as user’s initial rep-
utation (0.5), maximum sensing distance, and time gap, etc.
We assumed that there were 100 users, out of which 10 mali-
cious users was set in default. For benign and malicious
users, they send similar and opposite data for the same task,
respectively. For simplicity, we considered that similar reports
had the maximum similarity 1 while opposite reports had
the minimum similarity −1. To demonstrate the accuracy
of our trust/reputation model, we varied the trust threshold
δ from 0.3 to 0.7 with the increment of 0.1. Moreover,
the number of malicious participants (η) was varied from
20 to 60 with the increment of 10, in order to show the
system’s robustness against malicious users. For the efficiency
performance, we focused on testing the computation cost at
each entity, in which the number of reports n was varied from
5 to 25 with the increment of 5 (the default value is 10) to
show its impacts on the computation overhead. Additionally,
we compared EPTSense with our prior scheme PTISense and
a closest work from Li and Cao [21] (TTP-free scheme) which

Fig. 3. The FP and FN rates with different δ.

Fig. 4. Reputation of a malicious participant.

Fig. 5. The average running time of performing a task.

also adopts some similar cryptographic techniques for privacy
protection, without considering the data trustworthiness and
incentive fairness. For simplicity, the detailed pseudonym
generation method in PTISense is assumed to be instantiated
with the similar method to that in EPTSense with some
minor adjustment. All programs were implemented in Java on
Andriod smartphone (Snapdragon 820, 1.8GHz CPU and 3GB
RAM, as the participant) and a laptop (AMD Athlon M320,
2.1GHz CPU and 4GB RAM, running as other entities).

2) Simulation Results: We first evaluate the accuracy of
our trust/reputation evaluation model. Recall that we consider
a report correct/valid if its trust value is higher than the
predefined threshold δ, however, it is possible that a report is
actually correct but the trust value we calculated is lower than
δ, which is called false positive FP. Conversely, false negative
FN means that the derived trust of a false report is higher
than δ. Fig. 3 shows the rates of FP and FN with different
δ as the number of tasks M increases, in which the results
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Fig. 6. User’s computation cost in different phases.

Fig. 7. Server’s computation cost in different phases.

are similar to PTISense [39] due to the same trust/reputation
assessment model. As we can see, the FP and FN rates are both
approximately 0 when δ is small. As δ increases, the FP rate
grows while the FN rate keeps stable and finally remains 0.
The reason is that it is more possible that a correct report is
evaluated as invalid when a large δ is set. On the contrary,
there is negligible possibility that a false report whose trust is
more than a large δ. Additionally, we observe that with more
tasks, the FP rates under different δ values all decrease. The
reason is that the reputation of each user is updated after each
task and it is more accurate to evaluate the report trust based
on the user’s newest reputation.

To further show the resilience of our reputation evaluation
against malicious participants, Fig. 4 reports how a malicious
user’s reputation is changed with the task quantity M under
different number of malicious users (η), in which the initial
reputation of a malicious user is set to 1 in the worst case.
As shown in the figure, with the increase of task quantity,
the reputation of a malicious user drops down quickly, which
finally remains stable and is close to 0 when there are a few
malicious users. This is reasonable because the reports sub-
mitted by the malicious users conflict with those contributed
by the majority well-behaved users. Therefore, there is high
possibility that malicious users will get very low report trust
and a negative feedback. As more malicious users are involved,
the reputation drops more slowly, since more untrustworthy
reports support each other. When there are more than 50%
malicious users, the evaluation results may be dominated by
the most untrustworthy reports, which results in that malicious
users get high report trust and maintain a high reputation. As a
result, our scheme is robust against malicious users as long as
more benign users exist in the system.

To study the practicality of our proposed schemes,
we mainly measure the computation cost in different phases
at four entities. Fig. 5 compares each entity’s running time at
different phases of a task (n=10) in PTISense and EPTSense.
We find that both schemes show comparable computation
cost, with negligibly more computations performed by the
user while less computation cost induced at the server for
EPTSense. This result is consistent with the above complexity
analysis (see Section VI-A). Moreover, it is observed that the
receipt generation accounts for the most running time for the
user and server in both schemes. The reason is that n receipts
are generated based on n PBS, which needs considerable com-
putation cost for both user and server. When n=10, it takes
about 450ms for two schemes to generate receipts, which
is considered low in our holistic trustworthy and privacy-
aware sensing system. In contrast, the GM consumes more
computations in the user registration phase due to the time-
consuming request token generation. As to the PA, the least
computation cost is incurred for both schemes as only efficient
hash operations are required for pseudonym generation.

Furthermore, for fair comparison with [21], we mainly
compare the computation cost at the user and the server
in common phases (i.e., task allocation, receipt generation,
and reward allocation). The results are shown in Fig. 6 and
Fig. 7, respectively. First, in the assignment phase (Fig. 6(a)
and Fig. 7(a)), we observe that the computation time of
EPTSense and PTISense keeps stable with n for both user
and server, while that of Li et al. increases as n grows.
This is due to the fact that a certain number of operations
(i.e., group signature generation and verification) are con-
ducted at both entities in our two schemes, independent of the
scale of n. Nevertheless, Li et al. require n PBS to generate
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n report tokens generation, leading to more computation
cost. As shown in Fig. 6(b), during the submission phase,
EPTSense and PTISense require comparable time with Li et al.
at the user due to the similar cryptographic operations.
However, we observe that in Fig. 7(b), more server-side time
is consumed due to the additional encryption of reputation
feedback level, which is the cost of privacy-aware reputation
management. In the reward redemption and reputation update
phase, Fig. 6(c) clearly shows the superiority of EPTSense and
PTISense, only with negligible cryptographic overhead at the
user (1M.E. operation in PTISense and 3M.E.+2M.M.+H in
EPTSense). In contrast, large overhead is incurred in [21] due
to the fact that multiple blinding and unblinding operations
are conducted at the user when redeeming rewards. For the
server, as presented in Fig. 7(c), the three schemes have
similar cost. Overall, EPTSense can achieve trustworthy and
enhanced privacy-aware crowdsensing, which has comparable
computation cost with PTISense and far less cost than the
TTP-free scheme of Li et al., especially on the user side.

VII. CONCLUSIONS

In this paper, we proposed EPTSense, a multi-entity-assisted
mobile crowdsensing system with enhanced security, which
simultaneously addresses the data trustworthiness, user pri-
vacy, and incentive fairness. In our scheme, legitimate users are
able to join tasks anonymously and obtain the corresponding
rewards while malicious users cannot abuse anonymity to
earn more rewards or improve their reputations. Otherwise,
misbehavior would be detected with users revoked from the
system or a task. Compared to our previous work PTISense,
we further remove the assumption of a trust PA and is
resistant against possible collusion attacks. Security analysis
demonstrates that EPTSense achieves the same security and
privacy goals as PTISense under a TTP-free and two-entity
collusive model. Our prototype implementation further shows
the efficiency and practicality via comparisons.
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