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Abstract— Unmanned aerial vehicles (UAVs) can be used to
serve as aerial base stations to enhance both the coverage and
performance of communication networks in various scenarios,
such as emergency communications and network access for
remote areas. Mobile UAVs can establish communication links
for ground users to deliver packets. However, UAVs have lim-
ited communication ranges and energy resources. Particularly,
for a large region, they cannot cover the entire area all the
time or keep flying for a long time. It is thus challenging
to control a group of UAVs to achieve certain communication
coverage in a long run, while preserving their connectivity
and minimizing their energy consumption. Toward this end,
we propose to leverage emerging deep reinforcement learning
(DRL) for UAV control and present a novel and highly energy-
efficient DRL-based method, which we call DRL-based energy-
efficient control for coverage and connectivity (DRL-EC3). The
proposed method 1) maximizes a novel energy efficiency function
with joint consideration for communications coverage, fairness,
energy consumption and connectivity; 2) learns the environment
and its dynamics; and 3) makes decisions under the guidance
of two powerful deep neural networks. We conduct extensive
simulations for performance evaluation. Simulation results have
shown that DRL-EC3 significantly and consistently outperform
two commonly used baseline methods in terms of coverage,
fairness, and energy consumption.

Index Terms— UAV control, deep reinforcement learning,
energy efficiency, communication coverage.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) can be used to
serve as aerial Base Stations (BSs) to enhance both

the coverage and performance of communication networks
in various scenarios [1], such as emergency communications
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Fig. 1. A UAV network providing communication coverage for ground users
in a target region.

and network access for remote areas. When communication
networks are disrupted by a catastrophic natural disaster,
mobile UAVs can be quickly deployed to establish efficient
communication links for ground users to deliver packets. For
example, in 2011 Great East Japan earthquake, some people
were trapped in broken down houses or otherwise cut-off
areas, where quite limited number of disaster relief workers
patrolled destroyed areas to search for survivors, which will
not be possible if communication infrastructure is damaged
by the disaster and can be temporarily provided by mobile
UAVs [2].

Using UAVs as aerial BSs provides several benefits. First,
due to their high altitude, aerial BSs have a higher chance
of Line-of-Sight (LoS) links to ground users, compared to
ground BSs. Second, UAVs are able to provide fast, reliable
and cost-effective network access to regions poorly covered
by terrestrial networks [3].

In order to provide effective communication coverage in
a long run, UAVs with a high degree of mobility needs to
work as a team autonomously, which is illustrated in Fig. 1.
In such a UAV network, UAVs can work as BSs to provide
communication links for ground users using current wireless
technologies such as WiFi or LTE. One or a small number
of UAVs have long-distance connections (such as satellite
links) to external networks (such as Internet), which are called
gateways. This task is quite challenging because UAVs have
very limited communication range and energy resources, and
moreover, a UAV network usually has very limited number
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of gateways. First, due to limited communication range and
relatively high costs (several thousand USDs for each commer-
cial UAV), it is impossible to have sufficient UAVs to cover a
large target region all the time. Therefore, UAVs need to move
around to ensure each area is covered for a reasonable amount
of time. Moreover, fairness is critical for communication
coverage since it is not desirable to cover certain areas most
of time while leaving the rest barely covered. Second, due
to limited energy resources, a UAV cannot keep flying for a
long time, therefore, they need to be operated in an energy-
efficient manner to prolong network lifetime. In addition, due
to very limited number of gateways, a UAV network needs to
be kept connected all the time; otherwise, those ground users
associated with a disconnected non-gateway node will lose
their connections to the external network.

To address the above issues, we propose to leverage emerg-
ing deep reinforcement learning (DRL) [4], which has been
shown to deliver superior performance on a few game-playing
tasks recently. We believe DRL provides a promising solution
because it can well handle a sophisticated state space and
time-varying environment; and it uses powerful Deep Neural
Networks (DNNs) to guide decision making, which have been
shown to offer state-of-the-art performance on quite a few
learning tasks with limited to even zero domain knowledge.
However, it is not straightforward to solve the UAV control
problem using DRL. The basic DRL technique, deep Q
learning, uses a Deep Q Network (DQN) to estimate Q value
for each state-action pair, which can only handle a very limited
action space. The control problem here is a continuous control
problem with an unlimited action space. The commonly-used
method for continuous control is the actor-critic method [5]. So
we choose to use a state-of-the-art actor-critic method, Deep
Deterministic Policy Gradient (DDPG) [6], as the starting
point for our design. The control problem here is more
complicated than most other control problems since it involves
multiple objectives (i.e., coverage, fairness and energy con-
sumption) and a constraint on network connectivity. Even
though DRL has made remarkable successes on a few game-
playing tasks, it remains unknown if it can succeed on control
tasks in complex communication networks, which usually have
quite different objectives, constraints, and states and action
spaces. To the best of our knowledge, we are the first to
leverage DRL for enabling energy-efficient UAV control in
the context of providing communication coverage for ground
users. Specifically, we present a novel DRL-based method for
UAV control, DRL-EC3 (DRL-based Energy-efficient Control
for Coverage and Connectivity), which maximizes a novel
energy efficiency function while ensuring effective and fair
communication coverage, and network connectivity. Extensive
simulation results have also been presented to justify its
effectiveness, robustness and superiority in terms of various
metrics.

The rest of the paper is organized as follows: Section II
presents system model and problem definition. Section III
reviews the related research efforts. Section IV introduces nec-
essary preliminaries for DRL. Section V presents the proposed
DRL-based method for UAV control. Section VI presents
extensive simulation results for performance evaluation, and

Section VII describe practical implementation issues. Finally,
Section VIII concludes the paper.

II. RELATED WORK

In this section, we review the related works and point out
the differences.

UAV networks have been studied recently [7]–[11]. In [12],
the authors categorized UAV networks into four types: cen-
tralized UAV network, UAV ad-hoc network, multi-group
UAV network and multi-layer UAV ad-hoc network. In [13],
Shibata et. al. proposed an information communication system
consisting of multiple UAVs. Mozaffari et al. [14] proposed a
framework for optimized deployment and mobility of mul-
tiple UAVs for the purpose of energy-efficient uplink data
collection from ground IoT devices. Furthermore, by using the
mathematical framework of optimal transport theory, in [15],
Mozaffari et. al. proposed a framework to maximize the
average data service that is delivered to users based on
the maximum possible hover times. Other related works on
UAV communication networks and their applications to data
collection include [16]–[24].

UAV control has also been studied recently.
Richards et al. [25] developed a novel distributed algorithm
for coordination and communications of multiple UAVs
engaging multiple targets, where coordination of UAV
motion is achieved by implementing a simple behavioral
flocking algorithm utilizing a tree topology for distributed
flight coordination. In [26], a passivity-based decentralized
approach was proposed for bilaterally teleoperating a group
of UAVs composing the slave side of the teleoperation
system, ensuring high flexibility to the group topology (e.g.,
possibility to autonomously split or join during the motion).
Dierks and Jagannathan [19] proposed a new nonlinear
controller for UAV using neural networks, which learns
complete dynamics of UAVs online, and outputs feedback.
For single UAV control, Azari et al. [27] proposed a method to
figure out an altitude for maximizing coverage region, which
can guarantee a minimum outage performance. Although
Xu et al. [28] presented an adaptation of an optimal terrain
coverage algorithm, which could ensure a complete coverage
of the terrain, a single UAV has to fly more than 10 hours
to finish it, which requires a large power supply. The need
for a rapid-to-deploy solution to providing wireless cellular
services can be realized by UAV-BSs. Alzenad et al. [29]
studied a 3D UAV-BS placement problem that maximizes the
number of covered users with different Quality-of-Service
(QoS) requirements. We summarize the differences from
these related works as follows:

• None of them have carefully addressed energy efficiency
in UAV networking or control, which, however, is the
main focus of this paper.

• Unlike a static UAV deployment problem considered
in [29], dynamic UAV control is studied here.

Some research efforts have considered energy efficiency
for UAV control. Shakhatreh et al. [30] proposed an
optimal placement algorithm for UAV-BSs, which maxi-
mizes the number of covered users by using the minimum
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transmission power. Mozaffari et al. [31] developed a frame-
work to determine the optimal 3D locations of the UAVs in
order to maximize the downlink coverage performance with
minimum transmission power. Chen et. al. [32] proposed a
framework that leverages user-centric information to deploy
cache-enabled UAVs while maximizing users’ Quality-of-
Experience (QoE) using minimum total transmission power.
Elloumi et al. [33] presented a solution to UAV energy saving
problem, ensuring a continuous tracking of a mobile target.
They computed the energy consumption caused by transmit-
ting images and by vertical and horizontal UAV movements.
Di Franco and Buttazzo [34] proposed an energy model which
is derived from real measurements to find the power consump-
tion as a function of the UAV dynamic in different operating
conditions. Different from these research works, we focus on
energy consumption for UAV movements (with consideration
for communication coverage and connectivity), rather than
energy used for data transmissions [30]–[33], which has been
well studied in the literature of radio resource management.
Moreover, we consider the problem of jointly maximizing
coverage and fairness and minimizing energy consumption,
which is mathematically different from those problems studied
in these related works.

DRL has recently attracted much attention from both indus-
try and academia. In a pioneering work, Mnih et al. [4]
introduced a RL framework that uses a DQN as the function
approximator, and two new techniques, experience replay and
target network to improve learning stability. To solve problems
with continuous action spaces, Lillicrap et al. [6] presented an
actor-critic, model-free algorithm based on the deterministic
policy gradient that can operate over a continuous action
space. Other recent works on DRL for continuous control
include [35], [36]. Although DRL has made remarkable suc-
cesses on a few game-playing tasks, its applicability and effec-
tiveness on complex communication system control remain
unexplored.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We describe the system model and the control problem
in this section. First, we provide a list of major notations
in Table I.

A. System Model

We consider a network with a group of N UAVs flying
horizontally at a certain altitude to provide communication
coverage for ground users in a target region, which is illus-
trated in Fig. 1. Each UAV is aware of its own location.
We divide the target region into K cells. To ensure effective
coverage, we assume that the center of each cell (rather than
the whole cell), which we call a Point-of-Interest (PoI), needs
to be covered by at least a UAV for a reasonable amount
of time. We consider a communication coverage task that
lasts for T timeslots with equal durations. Due to limited
number of UAVs, they may not able to cover all the PoIs in
every timeslot. So UAVs need to fly around to cover different
subsets of PoIs in different timeslots. At the beginning of
the task, each UAV takes off at a random origin. In each
timeslot, at very beginning, each UAV hovers at its current

TABLE I

LIST OF MAJOR NOTATIONS

location or flies horizontally in a direction θ ∈ (0, 2π] for
a distance of d, which consumes φ(d) energy. The proposed
method is not restricted to any particular energy consumption
model φ(·). But the model should at least reflect the fact
that moving around leads to more energy consumption than
hovering at a location, which monotonically increases with
the flying distance. In our simulation, we used a linear model
where the energy consumption increases linearly with the
flying distance. Note that we are only interested in energy
consumed for UAV flying or hovering at the beginning of each
timeslot. Once a UAV reaches the desired location, it hovers
there and starts to serve as a BS for ground users for the rest
of the timeslot. These activities consume energy too, which,
however, are our of scope of this paper since communication
energy efficiency has been well studied in the literature of
radio resource management and we focus on how to control
movements of UAVs with consideration for both network
connectivity and coverage, which is unique to UAV networks.

Each UAV has a communication range of R. As mentioned
above, due to limited number of gateways, network formed
by UAVs need to be connected with regards to R all the
time. In addition, since each UAV flies at a certain altitude,
in terms of communication coverage for ground users, the cor-
responding range R� is different and usually less than R, which
we call coverage range. We consider the scenario in which
a cloud periodically collects the state (including locations,
energy usages, etc) of the UAV network via gateways.

B. Problem Statement

We aim to find a control policy which specifies how each
UAV moves in each timeslot. If a PoI falls into the coverage
range of a UAV, then we say it is covered. Note that a PoI may
be covered by multiple UAVs in a timeslot. Given a control
policy, the corresponding coverage score of a PoI k is:

ck =
Tk

T
, k ∈ {1, · · · , K}, (1)

where Tk gives the number of timeslots in which PoI k is
covered. Our objective is to maximize the total or average PoI
coverage. However, doing so may lead to unfair coverage, that
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is, in most or even all timeslots, a subset (likely a small subset)
of PoIs are covered, while the rest are left uncovered. Hence,
we need to address fairness in terms of coverage. The most
widely-used metric for fairness is Jain’s fairness index [37].
Here, given a control policy, the corresponding fairness index
is:

f =
(
∑K

k=1 ck)2

K(
∑K

k=1 c2
k)

. (2)

It can be easily seen that f ∈ [0, 1] and the larger the fairness
index, the fairer the coverage. In addition, flying UAVs around
leads to energy consumption, which needs to be minimized to
prolong network lifetime.

In short, we aim to find a control policy that can
1) maximize the total/average PoI coverage score; 2) maxi-
mize the fairness index for coverage, 3) minimize the energy
consumption, and 4) ensure UAV network connectivity in
every timeslot. It is quite challenging to achieve all of these
objectives because on one hand, to provide effective and fair
communication coverage, it is preferred to move UAVs around
to different cells from time to time such that they can be
well spread out in both the temporal and spatial domains;
one the other hand, to minimize energy consumption and
ensure network connectivity, it is preferred to reduce UAV
movements (for energy savings) and make them stay together
(for connectivity). Hence, a good solution to this problem is
supposed to well address this tradeoff.

IV. PRELIMINARIES

Before presenting the proposed method, we give a necessary
background introduction to DRL in this section.

In a standard Reinforcement Learning (RL) setting, an agent
interacts with a system environment in discrete decision
epochs. At each epoch t, the agent observes state st, executes
action at, and receives a reward rt. We are interested in finding
a policy π(s) that maps a state to an action (or a distribution
over actions) to maximize the discounted cumulative reward
R0 =

∑T
t=0 γr(st, at), where r(·) is the reward function and

the discount factor γ ∈ [0, 1].
DRL can be considered as the “deep” version of RL, which

uses a DNN (or multiple DNNs) as the approximator of the
Q(·) function. If in state st, the system follows action at at
epoch t, then:

Q(st, at) = E[Rt|st, at], (3)

where Rt =
∑T

j=t γr(sj , aj) and the Q(·) estimates the
expected discounted cumulative reward for each state-action
pair. A commonly-used off-policy method follows the greedy
policy: π(st) = arg maxat

Q(st, at). The DQN is trained by
minimizing the following loss function:

L(θQ) = E[yt − Q(st, at|θQ)], (4)

where θQ is the weight vector of the DQN; and yt is the target
value, which can be estimated by [38]:

yt = r(st, at) + γQ(st+1, π(st+1|θπ)|θQ). (5)

A DNN has a bad reputation for causing instability or even
divergence, which are certainly not desired. DRL usually uses

two techniques, experience relay and target network, to resolve
this issue. To update the DNN, DRL uses a mini-batch
from an experience replay buffer with state transition samples
collected during learning (instead of the immediately collected
sample). Compared to immediate sampling used in traditional
Q-learning, experience replay breaks correlations between
sequentially generated samples, thus can avoid divergence and
smooth out learning. Moreover, DRL uses an additional target
network to estimate target values < yt > for DNN training.
A target network has the same structure as the original DNN,
however, its weights are updated slowly with the original
DNN’s weights every a few epochs and are held fixed in
between.

DQN-based DRL only works for control problems with a
low-dimensional discrete action space. It is hard to apply a
DQN to continuous control because it needs to figure out
the action that maximizes the Q function, which is quite
difficult. The DQN-based method can only handle tasks with
a limited discrete action space. However, UAV control is
a continuous control task. The commonly-used method for
continuous control is the actor-critic method [5], which can be
also used with DNNs to search for the optimal control policy.
The basic idea is to maintain the parameterized actor function
π(st|θπ) to derive the best action from a given state, and a
critic function Q(st, at|θQ) to model the correlation between
Q values and state-action pairs. The above DQN can be used
to implement the critic function, which can be trained using
the loss function and method described above. According
to [6], the actor network can then be updated by the chain rule
applied to the cumulative reward J on the actor parameters θπ:

∇θπJ ≈ E[∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)]

= E[∇aQ(s, a|θQ)|s=st,a=π(st)

· ∇θππ(s|θπ)|s=st ]. (6)

Note that the experience reply and target network introduced
above can also be integrated to this approach to ensure
stability.

V. PROPOSED DRL-BASED METHOD: DRL-EC3

In this section, we present the proposed DRL-based method
for UAV control, namely, DRL-EC3. A DRL agent periodically
collects the state of the UAV network, finds the best action
using DRL-EC3, and deploys it by sending commands to
move UAVs. First, we define the state, action and reward of
the DRL agent.

1) State st (at decision epoch t): st consists of three parts:

• ct
k ∈ [0, 1]: the current coverage score of each PoI k

(Equation 1);
• bt

k ∈ {0, 1}: the current coverage state of each PoI k
(bt

k = 1 if it is covered; 0, otherwise.)
• et

i: the current energy consumption of UAV i.

Formally, the state st = [c1
t , · · · , cK

t , b1
t ; · · · , bK

t ; e1
t , · · · , eN

t ],
which has a cardinality of (2K + N ). Note that the state is
defined in this way because the DRL agent makes decisions
mainly based on current coverage and energy consumption.
Here the state is composed of both UAV locations and actions,
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Algorithm 1 DRL-EC3

1: Randomly initialize critic network Q(s, a|θQ) and actor
network π(s|θπ) with weights θQ and θπ;

2: Initialize target networks Q�(·) and π�(·) with weights
θQ′

:= θQ, θπ′
:= θπ;

3: Initialize replay buffer B;
4: for episode := 1, · · · , M do
5: Initialize the environment and receive an initial
6: state s1;
7: for epoch t := 1, · · · , T do
8: at = π(st) + εN ,
9: where N is a random noise and ε decays over time;

10: Execute at, and obtain st+1 and rt;
11: for UAV i := 1, · · · , T do
12: if UAV i flies beyond the border then
13: rt := rt − p, where p is a given penalty;
14: Cancel the movement of UAV i and
15: update st+1 accordingly;
16: end if
17: if i is disconnected then
18: rt := rt − p;
19: end if
20: end for
21: Store transition sample (st, at, rt, st+1) into B;
22: Sample a random minibatch of H samples
23: (sj , aj , rj , sj+1) from B;
24: yj := rj + γQ�(sj+1, π

�(sj+1|θπ′
)|θQ′

);
25: Update weights θQ of Q(·) by minimizing the loss:
26: L(θQ) = 1

H

∑H
j=1(yi − Q(sj , aj))2;

27: Update the weights θπ of π(·) using:
28: ∇θπJ ≈ 1

H

∑H
j=1 ∇aQ(s, a|θQ)|s=sj ,a=π(sj)

29: ·∇θππ(s|θπ)|sj ;
30: Update the corresponding target networks:
31: θQ′

:= τθQ + (1 − τ)θQ′
;

32: θπ′
:= τθQ + (1 − τ)θπ′

;
33: end for
34: end for

i.e. bk
t indicate whether or not a specific PoI is covered by a

UAV which also reflects the UAV movement status to certain
extent.

2) Action at (at decision epoch t): an action at consists of
two parts:

• θt
i ∈ (0, 2π]: the flying direction (i.e., angle) for

each UAV i;
• dt

i ∈ [0, 1]: the flying distance for each UAV i, which
is normalized by a maximum distance dmax. If dt

i = 0,
UAV hovers at the current location (i.e., static), otherwise
UAV flies to a certain dt

i , and when dt
i = 1, it flies to the

maximum distance dmax.

Formally, the action at = [θt
i , · · · , θt

N ; dt
1, · · · , dt

N ], which has
a cardinality of 2N . Note that the action is defined in this way
because the control policy is used to specify how each UAV
flies at each decision epoch. Since both decision variables take
continuous values, it is a continuous control task.

3) Reward rt (at decision epoch t): the reward t is defined
as:

rt =
ft ∗ (

∑K
k=1 Δct

k)
∑N

i=1 Δet
i

, (7)

where ft is the fairness index calculated based on the current
coverage scores (Equation 2), Δct

k = ct
k − ct−1

k is the
incremental coverage score (Equation 2), and Δet

i = et
i−et−1

i

is the incremental energy consumption. It is not trivial to define
the reward because three objectives, coverage score, fairness
and energy consumption, need to be properly addressed by
the reward. ft ∗ Δct

k can be considered as the effective
incremental coverage, which adds a discount to the actual
incremental value if such an increment leads to unfairness.
Hence, the numerator of the reward gives the gain, while the
denominator is the cost (in terms of energy consumption).
Overall, the reward can be considered as the energy efficiency
(gain that can be brought by a unit of energy). Then maxi-
mizing the cumulative reward is equivalent to maximizing the
average energy efficiency.

DRL-EC3 is formally presented as Algorithm 1. As men-
tioned above, since we are dealing with a continuous control
task, we choose to use a state-of-the-art actor-critic method,
DDPG [6], as the starting point for our design, whose basic
idea has been introduced in Section IV. Our algorithm works
as follows.

In the beginning, the algorithm randomly initializes the
weights θπ and θQ of the actor π(·) and critic Q(·) networks
respectively (Line 1). As mentioned above, we employ target
networks π�(·) and Q�(·) to improve learning stability. The
target networks have the same structures as the original
actor or critic networks, whose weights θπ′

and θQ′
are

initialized in the same way as their original networks (Line 2),
but are updated slowly (Lines 28-30) for the sake of stability.
τ is used to control the updating rate and τ = 0.001 in our
implementation.

The second part (Lines 8-20) is exploration. During explo-
ration, the algorithm derives an action from the current actor
network θπ(·) and then add a random noise εN , where N is a
random noise and ε decays over time. In our implementation,
N follows a normal distribution with a mean of 0 and a
variance of 0.6; and ε is initialized to 1 and decays with
a rate of 0.9995 over epochs. We also need to take care of
an important case where an action leads to violations of the
boundary and/or connectivity constraints by assigning a large
penalty to the reward (Lines 11-20). Specifically, if an action
causes the boundary violation of a UAV, then a penalty p is
deducted from the reward; and moreover, the corresponding
movement is canceled (i.e., the UAV stays put without making
the movement) and the elements related to this UAV in
st+1 are updated accordingly. Similarly, if an action causes
disconnection of a UAV, a penalty p is simply deducted from
the reward. In our implementation, the penalty is set to a large
value, which is 100 times the corresponding reward.

The third part is how to update the neural networks
(Line 21-32). Similar as in DDPG, we use a replay buffer
for updating the actor and critic networks, which is initialized
at the beginning with size B (Line 3). Specifically, we first
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store the collected samples into the replay buffer (Line 21),
and then sample a mini-batch of them from the buffer to
update the actor and critic networks (Line 21-29). As explain
above, the critic network θQ is updated by minimizing a
loss function L(·) (Equation 4); and the actor network θπ

is updated by computing the gradient ∇θπ (Equation 6).
In our implementation, we set the minibatch length H = 1024
and the discount factor γ = 0.9. Then the target networks are
slowly updated with a controled updating rate τ (Line 30-32).

In our design and implementation, we used a 2-layer fully-
connected feedforward neural network to serve as the actor
network, which includes 400 and 300 neurons in the first
and second layers respectively, and utilized the ReLU [39]
function for activation. In the final output layer, we used
tanh(·) as the activation function to bound the actions.
Similarly, for the critic network, we also used a 2-layer
fully-connected feedforward neural network with 400 and
300 neurons in the first and second layers respectively, and
with ReLU for activation. Besides, we utilized the L2 weight
decay [40] to prevent overfitting. These DNNs (i.e., the actor
and critic networks) were implemented using TensorFlow 1.4.

VI. PERFORMANCE EVALUATION

We conducted simulation to evaluate the performance of
the proposed DRL-EC3. In this section, we first describe
simulation settings and then present results and analysis.

A. Simulation Settings

In our simulation, we set the target region to be a square area
with a size of 10 × 10 units, where each unit corresponds to
100 meters. We divided this region to 100 cells, each of which
has a unit size. Hence, we had K = 100 PoIs in the centers of
these cells. We set the communication range R = 5 units. The
energy consumption of a hovering (stationary) UAV during
a timeslot (i.e., epoch) is 1 unit. Our simulation runs were
performed with Tensorflow 1.4 and Python 3.5 on a Ubuntu
16.04.3 server with 4 NVIDIA TITAN XP GPUs. We trained
the proposed DRL-based method for 1000 episodes, each of
which has 1000 epochs. After training, we tested it for a period
of T = 1000 epochs (i.e., timeslots).

We used the following metrics for performance evaluation.
• Average Coverage Score (c̄): This is the average PoI

coverage score at the end of the testing period. Each PoI’s
coverage score can be obtained using Equation (1).

• Fairness Index (f ): This is the Jain’s fairness index with
regards to PoI coverage scores at the end of the testing
period, which can be calculated using Equation (2).

• Normalized Average Energy Consumption (Ē): This is the
average UAV energy consumption during the test period,
which is normalized by Emax. Emax is the maximum
possible total energy consumption of a UAV during the
test period, which corresponds to the case where the UAV
flies the maximum distance in each timeslot.

• Energy Efficiency (r): This is similar to the reward, which
is calculated using the following equation:

r =
f ∗ c̄

Ē� (8)

where f , c̄ are the fairness index and average coverage
score defined above respectively. Ē� is almost the same
as the above normalized average energy consumption
except the normalization is done using a fixed energy
consumption model.

We compared DRL-EC3 with two commonly-used baseline
methods, Random and Greedy.

• Random: This is an extension to a simple random method.
At each timeslot, it randomly selects a moving direction
within (0, 2π] and a flying distance within [0, 1] as the
current action for each UAV. If the new location is
beyond the target region boundary or any UAV becomes
disconnected after executing this action, then all UAVs
abandon this action and stay put.

• Greedy: This is an extension to a greedy method. At each
timeslot, it sequentially chooses the moving direction
from {1, · · · , 360} and flying distance from {0, 0.5, 1}
that can maximize the instantaneous reward for every
UAV subject to the region boundary and connectivity
constraints described above.

B. Results and Analysis

1) Comparison With Other Solutions: In simulation sce-
nario 1, we show the impact of the UAV coverage range,
the number of UAVs and the energy consumption ratio (the
ratio between energy consumed for flying with the maximum
distance to hovering energy) on energy efficiency (Equation 8)
in Fig. 2. In scenario 1.a, we fixed the number of UAV to 7, and
the energy consumption ratio to 10:5, while we changed the
UAV coverage range from 1.75 to 3 with a step size of 0.25.
In scenario 1.b, the UAV coverage range and the energy
consumption ratio were fixed at 2.5 and 10:5 respectively,
while the number of UAVs was changed from 5 to 10.
In scenario 1.b, we fixed the number of UAVs and the UAV
coverage range at 7 and 3 respectively, while we changed the
energy consumption ratio from 10:8 to 10:3.

We can make the following observations from this figure:
(1) DRL-EC3 consistently outperforms both baselines in

terms of energy efficiency. For example, In Fig. 2(a), when the
coverage range is 2.5, DRL-EC3 achieves an energy efficiency
of 1.43, compared to 0.80 given by the best baseline, Random,
which represents a 78% improvement. In Fig. 2(b), when the
number of UAVs is 8, DRL-EC3 gives an energy efficiency
of 1.55, which makes an improvement of 76% compared
to 0.88 given by Random. In Fig. 2(c), DRL-EC3 achieves an
energy efficiency of 1.68 and outperforms Random by 79%
when the energy consumption ratio is 10:5. On average,
DRL-EC3 significantly improves energy efficiency by 80% and
671% over Random and Greedy respectively.

(2) From Fig. 2(a), it can be observed that the energy effi-
ciency of DRL-EC3 increases monotonically with the coverage
range. This is because a larger coverage range certainly leads
to better coverage (without any additional energy) thus better
energy efficiency.

(3) From Fig. 2(b), we can see that the energy efficiency of
DRL-EC3 increases monotonically with the number of UAVs.
This shows that the proposed method can make a good
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Fig. 2. The impact of (a) communication range, (b) number of UAVs, and (c) energy consumption ratio on energy efficiency.

Fig. 3. The impact of the coverage range on (a) average coverage score, (b) fairness index, and (c) normalized average energy consumption.

use of every UAV. That is, when more UAVs are provided,
DRL-EC3 can well utilize them to improve coverage in an
energy-efficient manner.

(4) From Fig. 2(c), we can make an interesting obser-
vation that the energy efficiency of DRL-EC3 does not
increase/decrease monotonically with the energy consumption
ratio. This is because its impact on energy efficiency is fairly
complicated. Specifically, a small energy consumption ratio
encourages UAVs to move around more, which will likely lead
to better coverage and fairness but more energy consumption.
On the contrary, a small ratio discourages UAVs’ movements,
which will likely hurt fairness but save energy; and it is hard
to tell how it will affect coverage. It is worth mentioning that
DRL-EC3 consistently outperforms both baseline no matter
what the energy consumption model (i.e., ratio) becomes,
which well justifies its robustness.

(5) We can also see that Random performs consistently
better than Greedy. This may be due to two reasons:
(a) Greedy sequentially determines an action for every UAV
in each timeslot, which may lead to suboptimal solutions.
(b) Greedy needs to discretize the solution space for greedy
action selection, which may lead to poor performance.

We show the impact of the coverage range on the average
coverage score, the fairness index and the normalized average
energy consumption in simulation scenario 2, whose settings
are the same as those in scenario 1.a. We can make the
following observations from Fig. 3:

(1) DRL-EC3 outperforms both baselines in terms of the
average coverage score and the normalized average energy
consumption. For example, In Fig. 3(a), when the coverage
range is 2.5, DRL-EC3 achieves an average coverage score of
0.84 compared to 0.66 obtained by Random, which represents
a 28% improvement. In Fig. 3(b), DRL-EC3 and Random
achieve almost the same fairness index when the coverage
range is 2.5. In Fig. 3(c), when the coverage range is 2.5,
DRL-EC3 achieves a normalized average energy consump-
tion of 0.50, which represents a 31% reduction compared
to 0.73 given by Random. On average, DRL-EC3 improves
the average coverage score by 26% and reduces the average
energy consumption by 30%. Moreover, DRL-EC3 signifi-
cantly improves the average coverage score and the fairness
index by 173% and 206% respectively over Greedy on average.

(2) It is expected that the average coverage score given by
DRL-EC3 increases monotonically with the coverage range,
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Fig. 4. The impact of the number of UAVs on (a) average coverage score, (b) fairness index, and (c) average energy consumption.

as shown in Fig. 3(a). This is easy to understand since a longer
coverage range can certainly improve coverage.

(3) In Fig. 3(b), we can see that DRL-EC3 and Random
increase slightly with the coverage range and both of them
have comparable fairness indices over 0.8 (in most cases),
which means both of them can lead to very fair coverage.
Random can certainly achieve good fairness due to its nature
of random movements. DRL-EC3 can provide comparable
results, which well justify its effectiveness on fairness.

(4) In Fig. 3(c), we can observe that the coverage range does
not make a significant impact on average energy consumption
since they obviously have pretty loose correlations.

Fig. 4 shows the impact of the number of UAVs on the
average coverage score, the fairness index and the normalized
average energy consumption in simulation scenario 3, whose
settings are the same as those in scenario 1.b. We can make
the following observations from this figure:

(1) DRL-EC3 beats both baselines in terms of the average
coverage score and the normalized average energy consump-
tion. For instance, In Fig. 4(a), when the number of UAVs
is 8, DRL-EC3 achieves an average coverage score of 0.89,
which represents an improvement of 24% over Random.
In Fig. 4(b), similar as the last scenario, DRL-EC3 and
Random achieve almost the same fairness when the number of
UAV is 8. In Fig. 4(c), DRL-EC3 gives a normalized average
energy consumption of 0.50, which represents a 30% reduc-
tion compared to Random, when the number of UAVs is 8.
On average, DRL-EC3 reduces the normalized average energy
consumption by 31%, and significantly improves the average
coverage score by 30% compared to Random. Moreover,
DRL-EC3 significantly improves the average coverage score
and fairness index by 192% and 196% respectively over
Greedy on average.

(2) In Fig. 4(a), as the number of UAV increases, the average
coverage score given by DRL-EC3 monotonically improves,
since more UAVs can provide more flexibility on covering PoIs
thus better coverage. Particularly, when the number of UAVs
is sufficiently large (larger than 9), DRL-EC3 can achieve a
very high coverage (more than 90%).

(3) From Fig. 4(b), we can make similar observations about
fairness index as those in Fig. 3(b).

(4) From Fig. 4(c), we can make an interesting observation
that the average energy consumption does not change much
with the number of UAVs, no matter which method is used.
More UAVs do not necessarily lead to more energy consump-
tion since more UAVs may lead to shorter distance movements,
which can somehow save energy.

Finally, we show the impact of energy consumption ratio
on the average coverage score, the fairness index and the
normalized average energy consumption in scenario 4 using
Fig. 5, whose settings are the same as those in scenario 1.c.
We can make following observations form this figure:

(1) We can see that DRL-EC3 consistently outperforms two
baselines in terms of the average coverage and the normalized
average energy consumption. For example, In Fig. 5(a), when
the energy consumption ratio is 10:5, the average coverage
score of DRL-EC3 is 0.92 compared to 0.75 given by Ran-
dom, which represents an improvement of 23%. In Fig. 5(b),
DRL-EC3 and Random achieve almost the same fairness
index, when the energy consumption ratio is 10:5. In Fig. 5(c),
DRL-EC3 obtains a normalized average energy consumption
of 0.50, which represents a 30% reduction compared to
Random, when energy consumption ratio is 10:5. On average,
DRL-EC3 reduces normalized average energy consumption
by 28% and improves the average coverage score by 20%,
compared to Random. Moreover, DRL-EC3 significantly
improves the average coverage score and the fairness index
by 153% and 157% respectively over Greedy on average.

(2) From Fig. 5(a) and Fig. 5(b), we can observe that if
DRL-EC3 is used, the energy consumption ratio does not
have a significant impact on coverage and fairness, which
well justify robustness of the proposed method in terms of
the energy consumption model.

(3) From Fig. 5(c), we can see that no matter which
method is used, the average energy consumption decreases
sharply with the energy consumption ratio. As mentioned
above, a small energy consumption ratio encourages UAVs
to move around more, which will likely lead to more
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Fig. 5. The impact of the energy consumption ratio on (a) average coverage score, (b) fairness index, and (c) normalized average energy consumption.

Fig. 6. Accumulated reward over time during testing.

energy consumption. So this observation is consistent with
our observation from Fig. 2(c).

2) Convergence and Impact of Hyper-Parameters: We first
show the reward, the average coverage and its fairness change
over time during testing. In this simulation scenario, we used
7 UAVs and set the coverage range and the energy consump-
tion ratio to 3 and 10:5 respectively.

Fig. 6 shows the accumulated reward over time (epochs).
We can see that the accumulated reward (in log scale) arises
monotonically over time. When it reaches 100 epochs (one
tenth of the task), the growth slows down. This is because
that at the beginning of the task, many PoIs have not yet
been covered and the coverage is unfair such that an action
can result in significant improvement on the reward. This
improvement diminishes when the PoIs are well and fairly
covered. A similar observation has also been made in [6].
Fig. 7 shows how the fairness index and coverage change
over time. As expected, the coverage increases almost linearly
over time and eventually reaches a high value (over 90%).
An interesting observation is the fairness index quickly reaches
a high value (over 0.9) and stays there for the rest of the testing
period. This well justifies that DRL-EC3 can provides effective
and fair coverage.

We next show the impact of some key hyperparameters
including the number of neurons of the used actor-critic
network, and the discount factor, on average coverage scores,

Fig. 7. Average coverage score and fairness index over time during testing.

fairness index, normalized average energy consumption and
energy efficiency. Results are presented in Table II. We used
three different sets of neuron numbers for 2-layer fully-
connected feedforward neural network, which is used in
actor network, critic network and target network. Structure
A has 200 and 100 neurons in the first and second layers,
respectively. Structure B has 400 and 300 neurons while
Structure C has 600 and 500 neurons, respectively. In each
structure, we fixed the number of UAV to 7, UAV coverage
range to 2.5 units and energy consumption ratio to 10:5,
while the discount factor γ is changed from 0.8, 0.9 to 0.99.
When γ is fixed, we observe that energy efficiency keeps
increasing when using more neurons. This is because that
appropriate number of neurons can improve the capacity
of DNNs, leading to find a better solution, i.e. Q(·) and
π(·). With the same network structure, energy efficiency is
also increasing when γ increases. For instance, energy effi-
ciency improves 0.06 when γ changes from 0.9 to 0.99 with
Structure B. Although average coverage score and normalized
average energy consumption may not change much, there is a
remarkable improvement of fairness index which leads to the
overall energy efficiency increase. This is because that bigger
γ means longer-term consideration of future reward r(·).
Since our considered scenario is to maximize the long-term
communication coverage, increasing γ helps UAVs to navigate
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TABLE II

IMPACT OF DIFFERENT HYPERPARAMETERS

in such a way that future movement will provide more effective
communication coverage in a long run.

VII. DISCUSSIONS

In this section, we discuss two practical implementation
issues related to the UAV navigation problem we considered
in this paper, decentralized multi-agent control solution and
scalability issue.

A. Decentralized Multi-Agent Control Solution

We primarily considered in this paper as a centralized
approach, where the decisions (as the action of UAVs) are
made by the back-end computational server. In extreme condi-
tions like disaster, communications bandwidth is quite limited
and cannot support much information delivery between UAV
and server back and forth, and thus decentralized solution is
expected. In [41], a multi-agent DDPG (called MADDPG) is
proposed as an adaptation of actor-critic methods that consid-
ers action policies of other agents and is able to successfully
learn policies that require complex multi-agent coordination.
However, directly applying it will not work in our scenarios
since state, action, and reward are completely different. We can
easily extend our proposed DRL-EC3 solution by allowing
each UAV only observes its covered PoI coverage and its own
energy consumption to generate a reward, and back-end server
collects all UAVs’ information at the end of each epoch for
critic network evaluation.

B. Scalability Issue

From implementation point of view, our proposed DRL-EC3

scale well with the increase of number of UAVs and PoIs. This
is because that we used only one actor-critic neural network,
one experience replay buffer (to store historical samplings),
and thus when more UAVs and/or PoIs are considered, the only
change is to enlarge the state space and action space, while
all the rest of Algorithm 0 remains the same.

VIII. CONCLUSION

In this paper, we proposed a novel and highly energy-
efficient DRL-based method for UAV control, which we call
DRL-EC3 (DRL-based Energy-efficient Control for Coverage
and Connectivity). Specifically, DRL-EC3 maximizes a novel
energy efficiency function with joint consideration for commu-
nications coverage, fairness, energy consumption and connec-
tivity, based on a recent actor-critic method, DDPG; and makes
decisions under the guidance of two Deep Neural Networks
(DNNs). We conducted extensive simulation for performance

evaluation. Simulation results have shown that DRL-EC3

significantly and consistently outperforms two commonly-
used baseline methods, Random and Greedy, in terms of
four metrics, including average coverage score, fairness index,
average energy consumption and energy efficiency.
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