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Abstract—Modern communication networks have become very
complicated and highly dynamic, which makes them hard to
model, predict and control. In this paper, we develop a novel
experience-driven approach that can learn to well control a
communication network from its own experience rather than
an accurate mathematical model, just as a human learns a new
skill (such as driving, swimming, etc). Specifically, we, for the
first time, propose to leverage emerging Deep Reinforcement
Learning (DRL) for enabling model-free control in commu-
nication networks; and present a novel and highly effective
DRL-based control framework, DRL-TE, for a fundamental
networking problem: Traffic Engineering (TE). The proposed
framework maximizes a widely-used utility function by jointly
learning network environment and its dynamics, and making
decisions under the guidance of powerful Deep Neural Networks
(DNNs). We propose two new techniques, TE-aware exploration
and actor-critic-based prioritized experience replay, to optimize
the general DRL framework particularly for TE. To validate and
evaluate the proposed framework, we implemented it in ns-3, and
tested it comprehensively with both representative and randomly
generated network topologies. Extensive packet-level simulation
results show that 1) compared to several widely-used baseline
methods, DRL-TE significantly reduces end-to-end delay and
consistently improves the network utility, while offering better
or comparable throughput; 2) DRL-TE is robust to network
changes; and 3) DRL-TE consistently outperforms a state-of-
the-art DRL method (for continuous control), Deep Deterministic
Policy Gradient (DDPG), which, however, does not offer satisfying
performance.

Index Terms—Experience-driven Networking, Deep Reinforce-
ment Learning, Traffic Engineering

I. INTRODUCTION

Extensive research efforts have been made to develop al-

gorithms and protocols for communication networks to utilize

their resources efficiently and effectively. Traditional network

resource allocation methods are mostly model-based, which

assume network environment and user demand can be well

modeled. However, communication networks have become

more complicated and highly dynamic, which makes them

hard to model, predict and control. Hence, we aim to develop

a novel experience-driven model-free approach that can learn

to well control a communication network from its experience

rather than an accurate mathematical model, just as a human

learns a skill (such as driving, swimming, etc). We believe
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that some emerging networking technologies, such as Software

Defined Networks (SDNs) [18], can well support such an

experience/data driven approach. For example, the Openflow

controller in an SDN can serve as the central control unit for

collecting data, making decisions and deploying solutions.

A fundamental networking problem is the Traffic Engi-

neering (TE): given a set of network flows with source and

destination nodes, find a solution to forward the data traffic

with the objective of maximizing a utility function. Simple

and widely-used solutions include always routing traffic via

shortest paths (e.g., Open Shortest Path First (OSPF) [24]);

or evenly distributing traffic via multiple available paths (e.g.,

Valiant Load Balancing (VLB) [38]). Obviously, neither of

them are optimal. Better solutions could be developed if there

exist accurate and mathematically solvable models for network

environment, user demands and their dynamics. Queueing

theory has been employed to model communication networks

and assist resource allocation [15], [25], [26], [37]. However,

it may not work well for those networking problems involving

multi-hop routing and end-to-end performance (such as delay)

due to the following reasons: 1) In the queueing theory, many

problems in a queueing network (rather than a single queue)

remain open problems, while a communication network with a

mesh-like topology represents a fairly complicated multi-point

to multi-point queueing network where data packets from a

queue may be distributed to multiple downstream queues, and

a queue may receive packets from multiple different upstream

queues. 2) The queueing theory can only provide accurate

estimations for queueing delay under a few strong assumptions

(e.g, tuple arrivals follow a Poisson distribution, etc), which,

however, may not hold in a complex communication network.

Note that even if the packet arrival at every source node

follows a Poisson distribution, packet arrivals at intermediate

nodes may not.

In addition, Network Utility Maximization (NUM) [17] has

been well studied, which usually provides a resource allocation

solution by formulating and solving an optimization problem.

However, these methods may suffer from the following issues:

1) They usually assume that some key factors (such as user

demands, link usages, etc) are given as input, which, however,

are hard to estimate or predict. 2) It is hard to directly

minimize end-to-end delay by explicitly including it in the

utility function since given decision variables for resource

allocation (such as TE), it is hard to express the corresponding

end-to-end delay in a closed form with them since an accurate

mathematical model is needed to achieve this (while queueing

theory may not work here as described above). 3) Network

dynamics have not been well addressed by these works. Most
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of them claimed to provide a “good” resource allocation

solution, which is optimal or close-to-optimal but only for

a snapshot of the network. However, most communication

networks are highly time-varying. How resource allocation

should be adjusted or re-computed to accommodate such

dynamics has not been well addressed by these NUM methods.

Recent breakthrough of Deep Reinforcement Learning

(DRL) [20] provides a promising technique for enabling ef-

fective experience-driven model-free control. DRL (originally

developed by DeepMind) enables computers to learn to play

games, including Atari 2600 video games and one of the

most complicated games, Go (AlphaGo [29]), and beat the

best human players. Even though DRL has made tremendous

successes on game-playing that usually has a limited action

space (e.g., moving up/down/left/right), it has not yet been

investigated how DRL can be leveraged for resource allocation

problems (such as TE) in complex communication networks,

which usually have sophisticated states and huge or continuous

action spaces.

We believe DRL is especially promising for control in

communication networks because: 1) It has advantages over

other dynamic system control techniques such as model-based

predictive control in that the former is model-free and does not

rely on accurate and mathematically solvable system models

(such as queueing models), thereby enhancing its applicability

in complex networks with random and unpredictable behav-

iors. 2) It is able to deal with highly dynamic time-variant

environments such as time-varying system states and user

demands. 3) It is capable of handling a sophisticated state

space (such as AlphaGo [29]), which is more advantageous

over traditional Reinforcement Learning (RL) [32]. However,

direct application of the basic DRL technique, such as Deep

Q-Network (DQN) based DRL (proposed in the pioneering

work [20]), does not work for the TE problem since it is a

continuous control problem (See Section IV); while DQN-

based DRL is only capable of handling control problems with

a limited action space. Although DRL methods have been pro-

posed for continuous control very recently [8], [16], we show

a state-of-the-art method, Deep Deterministic Policy Gradient

(DDPG) [16], does not work well for our TE problem.

In this paper, we develop a novel and highly effective

DRL-based model-free control framework for TE in a com-

munication network to jointly learn network dynamics and

making decisions under the guidance of powerful Deep Neural

Networks (DNNs). We summarize our contributions in the

following:

• We are the first to present a highly effective and practical

DRL-based experience-driven control framework, DRL-

TE, for TE.

• We discuss and show that direct application of a state-

of-the-art DRL solution for continuous control, namely

Deep Deterministic Policy Gradient (DDPG) [16], does

not work well for the TE problem.

• We propose two new techniques, TE-aware exploration

and actor-critic-based prioritized experience replay to

optimize the general DRL framework particularly for TE.

• We show via extensive packet-level simulation using ns-

3 [22] with both representative and random network

topologies that DRL-TE significantly outperforms several

widely-used baseline methods.

To the best of our knowledge, we are the first to leverage

the emerging DRL for enabling model-free control in commu-

nication networks. We aim to promote a simple and practical

experience-driven approach based on DRL, which, we believe,

can be easily extended to solve many other resource allocation

problems in communication networks.

II. DEEP REINFORCEMENT LEARNING (DRL)

We provide necessary background about DRL in this sec-

tion. We consider a standard RL setup consisting of an agent

interacting with an environment in discrete decision epochs.

At each decision epoch t, the agent observes state st, takes

an action at and receives a reward rt. The objective is to

find a policy π(s) mapping a state to an action (deterministic)

or a probability distribution over actions (stochastic) with the

objective of maximizing the discounted cumulative reward

R0 =
∑T

t=0 γ
tr(st, at), where r(·) is the reward function and

γ ∈ [0, 1] is the discount factor.

In the seminal work [20], DeepMind introduced DRL,

which extends the well-known Q-learning to enable end-to-

end system control based on high-dimensional sensory inputs

(such as raw images). The training phase adopts a DNN called

Deep Q-Network (DQN) to derive the correlation between

each state-action pair (st, at) of the system under control and

its value function Q(st, at), which is the expected discounted

cumulative reward. If the system in state st and follows action

at at decision epoch t (and a certain policy π thereafter):

Q(st, at) = E

[

Rt|st, at

]

, (1)

where Rt =
∑T

k=t γ
kr(st, at). A commonly-used off-

policy algorithm takes the greedy policy: π(st) =
argmaxat

Q(st, at). The DQN can be trained by minimizing

the loss:

L(θQ) = E

[

yt −Q(st, at|θ
Q)

]

, (2)

where θ
Q is the weight vector of the DQN and yt is the target

value, which can be estimated by:

yt = r(st, at) + γQ(st+1, π(st+1|θ
π)|θQ). (3)

It is not new to use a neural network (or even DNN)

as the function approximator in RL. But a non-linear func-

tion approximator (such as neural network) is known to be

unstable or even to diverge. Two effective techniques were

introduced in [20] to improve stability: experience relay and

target network. Unlike traditional RL, a DRL agent updates the

DNN with a mini-batch from an experience replay buffer [20],

which stores state transition samples collected during learn-

ing. Compared to using only immediately collected samples

(such as original Q-learning), randomly sampling from the

experience replay buffer allows the DRL agent to break the

correlation between sequentially generated samples, and learn
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from a more independently and identically distributed past

experiences, which is required by most of training algorithms,

such as Stochastic Gradient Descent (SGD). So experience

replay can smooth out learning and avoid oscillations or

divergence. In addition, a DRL agent uses a separate target

network (which has the same structure as the DQN) to estimate

target values < yt > for training the DQN, whose parameters,

however, are slowly updated with the DQN weights every

C > 1 epochs and are held fixed between individual updates.

The traffic engineering problem (described next) is a con-

tinuous control problem. Unfortunately, the DQN-based DRL

only works for control problems with a low-dimensional

discrete action space. It cannot be easily applied to continuous

control since it needs to find the action that maximizes the

action-value function, which, however, requires an iterative

process to solve a non-trivial non-linear optimization problem

at each epoch. A straightforward solution to adapting DQN-

based approach to continuous cases is to simply discretize

the action space, which, however, may likely leads to a huge

number of actions, which are very hard to deal with too.

Continuous control has often been tackled by the actor-

critic approach [14], which usually employs the policy gradient

method to search for the optimal policy. The traditional actor-

critic approach can also be extended to embrace DNN (such

as DQN) to guide decision making [16]. For example, a recent

work [16] from DeepMind introduced an actor-critic method,

called Deep Deterministic Policy Gradient (DDPG), for con-

tinuous control. The basic idea is to maintain a parameterized

actor function π(st|θ
π) and a parameterized critic function

Q(st, at|θ
Q). The critic function can be implemented using

the above DQN, which returns Q value for a given state-action

pair. The actor function can also be implemented using a DNN,

which specifies the current policy by mapping a state to a

specific action. According to [28], the actor network can be

updated by applying the chain rule to the expected cumulative

reward J with respect to the actor parameters θ
π:

∇θπJ ≈ E

[

∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)

]

= E

[

∇aQ(s, a|θQ)|s=st,a=π(st) · ∇θππ(s|θπ)|s=st

]

.

(4)

Note that the experience replay and target network introduced

above can also be integrated to this approach to ensure

stability.

III. PROBLEM STATEMENT

We describe the Traffic Engineering (TE) problem in this

section. First, we summarize the major notations below for

quick reference.

We consider a general communication network with K
end-to-end communication sessions. We use a directed graph

G(V,E) to model the network, where each vertex corresponds

to a node (router or switch) and each edge corresponds to a

directed communication link connecting a pair of nodes. Each

communication session k has a source node sk, destination

dk and a set of candidate paths Pk (connecting sk with dk)

TABLE I: Notation Definition

Variable Definition

K The number of communication sessions

Pk The set of candidate paths of session k

E The set of links of the network

Bk Traffic demand of session k

Ce Capacity of link e

fk,j The amount of traffic of
the jth path of session k

wk,j Split ratio for the jth path of session k

xk , zk Throughput and delay of session k

s, a, r State, action and reward

pi, P (i) Priority and probability (being selected)
of transition sample i

θπ ,θQ Weights of actor and critic networks π(·) and Q(·)

that can carry its traffic load. As mentioned above, we aim to

study a TE problem seeking a rate allocation solution, which

specifies the amount of traffic load fk,j going through the

jth path of Pk. Note that once we have such a solution,

then when a packet of session k arrives at sk, path j is

chosen to transmit the packet with a probability of wk,j , where

wk,j = fk,j/(
∑|Pk|

j=1 fk,j), which is known as the split ratio.

The α-fairness [31], [36] model has been widely used for

NUM. According to this model, the utility of a communication

session with a steady-state throughput of x is Uα(x) = (x
1−α

1−α
).

Particularly, as α → 1, in the limit U1(x) becomes log x [36].

For α > 0, Uα(x) is monotonically increasing with x. The ob-

jective of the TE problem is usually set to maximizing the total

utility of all the communication sessions, i.e.,
∑K

k=1 Uα(x).
α can be used to tradeoff fairness and efficiency. If α = 1,

the objective is to achieve the proportional fairness, which is

widely used for resource allocation.

In order to address both throughput and delay, similar as

in [36], we define a utility function U(·) for session k:

U(xk, zk) = Uα1
(xk)− σ · Uα2

(zk), (5)

where xk and zk are the end-to-end throughput and delay of

session k respectively; and σ expresses the relative importance

of delay vs. throughput. Similarly, the objective of the TE

problem is to maximize the total utility of all the communi-

cation sessions in the network, i.e.,
∑K

k=1 U(xk, zk).

Note that we aim to consider a general communication

network and show how DRL can enable experience-driven

networking rather than targeting at a specific physical net-

work (such as SDN, multihop wireless network) or a specific

scenario (such as WAN, MAN, LAN, etc). So we try to make

system model and problem statement as general as possible.

However, the proposed control framework (Section IV) is so

flexible that it can be easily extended for a specific network

or scenario with additional constraints.

IV. PROPOSED DRL-BASED CONTROL FRAMEWORK

In this section, we present the proposed DRL-based control

framework, DRL-TE, for the TE problem described above.
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In order to utilize the DRL techniques (no matter which

method/model to use), we first need to design the state space,

action space and reward function.

• State Space: The state consists of two

components: throughput and delay of each

communication session. Formally, the state vector

s = [(x1, z1), · · · , (xk, zk), · · · , (xK , zK)].
• Action Space: An action is defined as the solution to

the TE problem, i.e., the set of split ratios for the

communication sessions. Formally, the action vector a =
[w1,1, · · · , wkj , · · · , wK,|Pk|], where

∑|Pk|
j=1 wk,j = 1.

• Reward: The reward is the objective of the TE problem,

which is the total utility of all the communication ses-

sions. Formally, r =
∑K

k=1 U(xk, zk).

Note that the design of state space, action space and reward

is critical to the success of a DRL method. Our design well

captures network states and the key components of the TE

problem without including useless/redudant information. The

core of the proposed control framework is an agent, which

runs a DRL algorithm (Algorithm 1) to find the best action

at each decision epoch, takes the action to the network (e.g.,

through a network controller) observes the network state, and

collects a transition sample.

The TE problem is obviously a continuous control problem.

As explained above, the DQN-based DRL proposed in the

well-known work [20] does not work here; so we choose

the state-of-the-art DRL-based solution for continuous control,

DDPG [16], as the starting point for our design, whose basic

idea has been introduced in Section II.

Even though DDPG has been demonstrated to work well on

quite a few continuous control tasks [16], our experimental

results, however, show that direct application of DDPG to

the TE problem does not lead to satisfying performance (Sec-

tion V). We suspect this is due to the following two reasons:

1) The DDPG framework in [16] does not clearly specify

how to explore. A simple random noise based method or the

exploration methods proposed for physical control problems

(mentioned in [16]) do not work well for the TE problem

here. 2) DDPG utilizes a simple uniform sampling method for

experience replay, which ignores the significance of transition

samples in the replay buffer. To address these two issues, we

propose two new techniques to optimize DDPG particularly

for TE, including TE-aware exploration which leverages a

good TE solution as the baseline during exploration; and actor-

critic-based prioritized experience replay which can employs

a new method for specifying significance of samples with

careful consideration for both the actor and critic networks.

Exploration is an essential and important process for training

a DRL agent because an inexperienced agent needs to see

sufficient transition samples to gain experience and eventually

learn a good (hopefully optimal) policy. For continuous control

problems, exploration is quite challenging because there are

infinite number of actions that can be chosen in each decision

epoch and the commonly-used ǫ-greedy method [20] only

works for tasks with a limited discrete action space, which

obviously does not work here. DDPG generates an action for

exploration by adding a random noise to the action returned

by the current actor network.

For exploration, we propose a new randomized algorithm

that guides the exploration process with a base TE solution.

Specifically, with ǫ probability, the DRL agent derives action

as abase + ǫ · N ; and with (1− ǫ) probability, it derives action

as a + ǫ · N ; where abase is a base TE solution, a is the

output of actor network π(·) and ǫ is an adjustable parameter.

ǫ can tradeoff exploration and exploitation by determining the

probability of adding a random noise to the action rather than

taking the derived action from the actor network. ǫ decays

with decision epoch t, which means with more learning,

more derived (rather than random) actions will be taken. The

parameter N is a uniformly distributed random noise.

The proposed control framework is not restricted to any spe-

cific base TE solution for abase, which can be obtained in many

different ways. For example, a simple solution is to use the

shortest path to deliver all the packets for each communication

session, which is not optimal in most cases but is good enough

to sever as a baseline for exploration. Another solution is to

evenly distribute traffic load of each communication session to

all candidate paths. NUM-based methods can also be used to

find base solutions. For example, we can obtain a TE solution

by solving the following mathematical programming:

NUM-TE:

max
<xk,fk,j>

∑

k

Uα(xk) (6a)

subject to:

K
∑

k=1

∑

pj∈Pk:e∈p

fk,j ≤ Ce, ∀ e ∈ E; (6b)

xk ≤ Bk, k ∈ {1, · · · ,K}; (6c)

|Pk|
∑

j=1

fk,j = xk, k ∈ {1, · · · ,K}. (6d)

In this formulation, the objective is to maximize the total utility

in terms of throughput. Note that it is hard to include the end-

to-end delay term in the utility function since there does not

exists a mathematical model that can accurately establish a

connection between end-to-end delay and the other decision

variables < xk, fk,j >. This is why end-to-end delay has

not been well addressed by most existing works on NUM.

Constraints (6b) ensure the aggregated traffic load on each

link does not exceed its capacity Ce, where pj is the jth

path in Pk. Constraints (6c) ensure the total throughput of

each session k does not exceed its demand Bk, which can be

estimated. Constraints (6d) establish the connections between

two set of decision variables < xk > and < fk,j >. If

α = 1, Uα(xk) = log xk, then this problem becomes a convex

programming problem, which can be efficiently solved by the

Gurobi Optimizer [10] that were used in our implementation.

DDPG simply uniformly samples transition data from the

experience replay. It has been shown by [30] that an DRL
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agent can learn more effectively from some transitions than

others. A method called prioritized experience replay has also

been introduced in [30], which has been shown to lead to better

performance on game-playing tasks when being combined

with DQN. It assigns a priority for each transition sample.

Based on this priority, transition data in the replay buffer are

sampled in each epoch. However, this method was proposed

only for DQN-based DRL and has never been used with the

actor-critic method for continuous control. We extend this

method to enable prioritized experience replay under the actor-

critic framework. Specifically, since an actor-critic method

uses two networks (actor and critic) to guide decision making,

the priority should consist of two parts. The first part is the

Temporal-Difference (TD) error, which corresponds to training

of the critic network:

δ = y −Q(s, a), (7)

where y is the target value for training the critic network,

which is defined in Equation (3). Note that to help understand

the basic idea better, we omit the subscripts/superscripts here

for clean presentation; the exact forms of these equations can

be found at the formal algorithm presentation. The actor and

critic network are jointly trained by transition samples in the

replay buffer. The second part is related to training of the actor

network, i.e., the Q gradient ∇aQ = ∇aQ(s, a)|s=si,a=π(si)

(Equation (4)). Combining them together, the priority of a

transition sample is given as:

p = ϕ · (|δ|+ ξ) + (1− ϕ) · |∇aQ|, (8)

where ϕ is a parameter controlling the relative importance of

TD error vs. Q gradient. |∇aQ| is the average of absolute

values of the Q gradient (which is a vector). A small positive

constant ξ is used to prevent the edge-cases of transitions not

being revisited once their error is zero. The probability of

sampling transition i is:

P (i) =
pβ0

i
∑|B|

j pβ0

j

, (9)

where the exponent β0 determines how much prioritization is

used; if β0 = 0, then it becomes uniform sampling.

We formally present the proposed DRL-based control

framework for TE, DRL-TE, as Algorithm 1. First the algo-

rithm randomly initializes all the weights θ
π of actor network

π(·); and θ
Q of the critic networks Q(·)(line 1). As mentioned

above, we employ target networks π′(·) and Q′(·) to improve

learning stability. The target networks are clones of the original

actor or critic networks, whose weights θ
π′

and θ
Q′

are

initialized in the same way as their original networks (line

2) but are slowly following updated (line 23). The update rate

is controlled by a parameter τ . In each decision epoch, the

algorithm applies the TE-aware exploration method to obtain

an action first (line 6), which is explained above.

We use a prioritized replay buffer for storing transition

samples. We first store the sample into the replay buffer with

maximal priority (line 8), and then sample a mini-batch of

Algorithm 1: DRL-TE

1: Randomly initialize critic network Q(·) and actor

network π(·) with weights θ
Q and θ

π respectively;

2: Initialize target networks Q′(·) and π′(·) with weights

θ
Q′

:= θ
Q, θπ′

:= θ
π;

3: Initialize prioritized replay buffer B and p1 := 1;

/**Online Learning**/

4: Receive the initial observed state s1;

/**Decision Epoch**/

5: for t = 1 to T do

6: Apply the TE-aware exploration method to obtain at;

7: Execute action at and observe the reward rt;
8: Store transition sample (st, at, rt, st+1) into B with

maximal priority pt = maxj<t pj ;

9: /**Prioritized Transition Sampling**/

10: for i = 1 to N do

11: Sample a transition (si, ai, ri, si+1) from B where

i ∼ P (i) := pβ0

i /
∑

j p
β0

j ;

12: Compute important-sampling weight:

ωi := (|B| · P (i))−β1/maxjωj ;

13: Compute target value for critic network: Q(·)
yi := ri + γ ·Q′(si+1, π

′(si+1));
14: Compute TD-error: δi := yi −Q(si, ai);
15: Compute gradient: ∇θπJi :=

∇aQ(s, a)|s=si,a=π(si) · ∇θππ(s)|s=si ;

16: Update the transition priority:

pi := ϕ · (|δi|+ ξ) + (1− ϕ) · |∇aQ|;
17: Accumulate weight-change for critic network: Q(·)

∆θQ := ∆θQ + ωi · δi · ∇θQQ(si, ai);
18: Accumulate weight-change for actor network: π(·)

∆θπ := ∆θπ + ωi · ∇θπJi;
19: end for

20: /**Network Updating**/

21: Update the weights of critic network: Q(·)
θ
Q := θ

Q + ηQ ·∆θQ , reset ∆θQ := 0;

22: Update the weights of actor network: π(·)
θ
π := θ

π + ηπ ·∆θπ , reset ∆θπ := 0;

23: Update the weights of the corresponding target

networks:

θ
Q′

:= τθQ + (1− τ)θQ′

;

θ
π′

:= τθπ + (1− τ)θπ′

;

24: end for

transition samples from B (lines 10-19) to train the actor and

critic networks. The priority of transition is then updated using

the method described right above (lines 16-18). Note that for

every transition sample (si, ai, ri, si+1) in the mini-batch, we

first obtain its important-sampling weight ω (line 12), which is

used to correct the bias introduced by prioritized replay [30].

The weight is integrated into the critic network updating in

the form of ω · δ (rather than δ only) (line 17). Priorities

ensure high-error transitions are seen more frequently. Those

large steps (with large priority) can be very disruptive because

of large updating values. As suggested by [30], we import
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annealing weight β1 to correct this bias, by linearly annealing

it from its initial value to 1 (line 12). For learning stability,

we always normalize ω by 1/maxjωj , so they only scale the

weight update downward. We obtain the action for the next

state from target actor network π′(si+1), and the target value

yi (line 13) for training the critic network; In addition, we

compute the policy gradient by the chain rule, as described in

Equation (4) (line 15). The weight-changes are accumulated

(lines 17-18) and used to update the actor and critic networks

(lines 21-22).

There are quite a few hyper-parameters in the proposed con-

trol framework. To maximize its performance, we conducted

a comprehensive empirical study to find the best settings for

them and the best structures of the actor and critical networks.

In our design and implementation, we used a 2-layer fully-

connected feedforward neural network to serve as the actor

network, which includes 64 and 32 neurons in the first and

second layer respectively and utilized the Leaky Rectifier [7]

for activation. In the final output layer, we, however, employed

the softmax [7] as activation function to ensure the sum of

output values equals one. For the critic network, we also used

a 2-layer fully-connected feedforward neural network, with 64

and 32 neurons in the first and second layer respectively and

with the Leaky Rectifier for activation. In order to sample

N transitions with probabilities given by Equation (9), the

range [0, ptotal] is divided into N sub-ranges, and a transition

is uniformly sampled from each sub-range, where ptotal is

the sum of priorities of all transitions in replay buffer. As

suggested by [30], we used a sum-tree to implement the

priority probability, which is similar to a binary heap. The

differences are 1) leaf nodes store the priorities of transitions;

and 2) internal nodes store the sum of its children. In this way,

the value of root is ptotal, and the time complexity for updating

and sampling is O(logNtree), where Ntree is the number of

nodes in the sum-tree. During the empirical study, we also

found good settings for the other important hyper-parameters:

ξ := 0.01, β0 := 0.6, β1 := 0.4, γ := 0.99, ϕ := 0.6,

ηπ := 0.001, ηQ := 0.01, τ := 0.01 and N = 64.

V. PERFORMANCE EVALUATION

We conducted extensive simulation to evaluate the perfor-

mance of the proposed DRL-based framework. We present

and analyze the simulation results in this section. We imple-

mented the proposed framework and set up the environment

in ns-3 [22] for packet-level simulation. The DNNs included

in the framework (i.e., the actor and critic networks) were

implemented using Tensorflow [33]. Due to the light wight of

our design, we found that we could easily run and train the

proposed framework (along with the corresponding DNNs) on

a regular desktop with an Intel Quad-Core 2.6Ghz CPU with

8GB memory.

The simulation runs were performed on two well-known

network topologies, NSF Network (NSFNET [23]) and Ad-

vanced Research Projects Agency Network (ARPANET [1]).

Besides, we randomly generated a network topology with 20

nodes and 80 links, using the widely-used network topology

generator, BRITE [19]. For each network topology, we as-

signed K = 20 communication sessions, each with randomly

selected source and destination nodes. For each communica-

tion session, we selected 3-shortest paths (in terms of hop-

count) as its candidate paths. The capacity of each link was

set to 100Mbps. The packet arrival at the source node of

each communication session (i.e., traffic demand) follows a

Poisson process (note that the packet arrivals at intermediate

nodes may not follow a Poisson process), with its mean value

uniformly distributed within a window with a size of 20Mbps.

In our experiments, we set the window to [0, 20]Mbps initially,

and we increased the traffic demand by sliding the window

with a step size of 5Mbps for each run. We set α := 1
and σ := 1 for the utility function to balance throughput,

delay and fairness, i.e. the objective/utility function became
∑K

k=1(log xk − log zk).

We compared our DRL-based control framework with three

widely used baseline solutions as well as DDPG [16]:

• Shortest Path (SP): every communication session uses a

shortest path to deliver all its packets.

• Load Balance (LB): every communication session evenly

distributes its traffic load to all candidate paths.

• Network Utility Maximization (NUM): it obtains TE

solutions by solving the convex programming problem,

NUM-TE given in Section IV.

• DDPG: For fair comparison, we replaced the DRL-TE

algorithm (Algorithm 1) with the DDPG algorithm [16],

while keeping the other settings (such as state, action,

reward and the DNNs) the same.

We used the total end-to-end throughput, the end-to-end

average packet delay, and the network (i.e., total) utility value

as the performance metrics for comparisons. We present the

corresponding simulation results in Figs. 1-3, each of which

corresponds to a network topology. Note that the numbers on

the x-axis are the central values of the corresponding traffic

demand windows (mentioned above). In addition, we show

the performance of two DRL methods (DDPG and DRL-TE)

over the three network topologies during the online learning

procedure in terms of the reward. For illustration and compar-

ison purposes, we normalized and smoothed the reward values

using a commonly-used method (r − rmin)/(rmax − rmin)
(where r is the actual reward, rmin and rmax are the minimum

and maximum rewards during online learning respectively)

and the well-known forward-backward filtering algorithm [11]

respectively. We present the corresponding simulation results

in Fig. 4. Note that for these results, the corresponding traffic

demand was generated using window [10, 30]Mbps. We can

make the following observations from these results.

1) From Figs. 1a, 2a and 3a, we can see that compared to

all the four baseline methods, DRL-TE significantly reduces

end-to-end delay on all the three topologies. For example,

on the NSF topology, when the traffic load is medium (i.e.,

traffic demand window is [10, 30]Mbps), DRL-TE significantly

reduces the end-to-end delay by 51.6%, 28.6%, 74.6% and

50.0% respectively, compared to SP, LB, NUM and DDPG.
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Fig. 1: Performance of all the methods over the NSFNET topology
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Fig. 2: Performance of all the methods over the ARPANET topology

Overall, DRL-TE achieves an average reduction of 55.4%,

47.1%, 70.5% and 44.2% respectively. Compared to through-

put, end-to-end delay is harder to deal with since as discussed

above, it lacks accurate mathematical models that can well

capture its characteristics and runtime dynamics. It is not

surprising to see NUM leads to fairly poor performance since

it fails to explicitly address end-to-end delay and its design is

based on the assumption that network state is fairly stable

or slowly changes, which may not be true; while simple

solutions such as SP and LB offers expected performance since

intuitively, the shortest paths and load balancing (which can

avoid congestions) can help reduce delay. DRL-TE unarguably

delivers superior performance with regards to end-to-end delay

because it keeps learning runtime dynamics and making wise

decisions to move to the optimal with the help of DNNs.

2) Even though the objective (reward function) of DRL-

TE is not to simply maximize end-to-end throughput, it still

delivers satisfying performance, as shown in Figs. 1b, 2b and

3b. Compared to all the other methods, DRL-TE leads to

consistently higher throughput on the NSFNST topology. On

both the ARPANET and random topologies, the throughput

values given by DRL-TE are comparable to those given by

LB (load balancing is supposed to yield high throughout), but

still higher than those offered by SP and NUM.

3) As expected, we can see from Figs. 1c, 2c and 3c that

DRL-TE outperforms all the other methods in terms of the

total utility because its reward function is set to maximizing

it. On average, DRL-TE outperforms SP, LB, NUM and DDPG

by 7.7%, 9.1%, 26.4% and 12.6% respectively.

4) From Figs. 1-3, we can observe no matter which method

is used and no matter which network topology is chosen,

the throughput and delay basically go up with the traffic

demand; while the total utility generally go down. This is

easy to understand because the higher the traffic load, usually

the higher the throughput, but the higher the delay due to

longer waiting time or even congestion, which brings down

the total utility. Moreover, the throughput does not increase

monotonically, when the network becomes saturated, higher

traffic demands may even lead to poorer throughput due to

congestion and packet losses. We also notice that DRL-TE is

robust to changes of traffic load and network topology since it

performs consistently better than all the other methods across

all the traffic demand settings and all the topologies.

5) In addition, we can also observe from Figs. 1-3 that

DDPG does not work very well on these topologies. For

example, compared to SP and LB, it performs generally worse

in terms of the total utility, even though it provides slightly

better end-to-end delay. To further explain why DRL-TE works

better than DDPG, we also show how the reward value changes

during online learning over the three network topologies in

Fig. 4. Clearly, over all these network topologies, DRL-TE

quickly (within just a couple of thousands of decision epoches)

reaches a good solution (that gives a high reward); while

DDPG seems to be stuck at local optimal solutions with lower

reward values. Particularly, on the random topology, we can

only see minor improvement on the first few hundred epoches,

then it fails to find better solutions (actions) to improve the

reward. These results clearly justify the effectiveness of the

proposed new techniques including TE-aware exploration and

the actor-critic-based prioritized experience replay.
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Fig. 3: Performance of all the methods over the random topology
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Fig. 4: Reward over the three network topologies during online learning

VI. RELATED WORK

Traffic Engineering (TE) and Network Utility Max-

imization (NUM): TE and NUM have been well studied

in the literature. In a seminal work [17], Low and Lapsley

proposed asynchronous distributed algorithms to solve a flow

control problem whose objective is to maximize the aggregate

source utility over their transmission rates. In [26], Palomar

and Chiang, introduced primal, dual, indirect, partial, and

hierarchical decompositions, focusing on NUM problems and

the meanings of primal and dual decompositions in terms

of network architectures. In [25], the authors designed a

congestion control system that scales gracefully with multiple

objectives, which was built on decentralized control laws

at end-systems. Xu et al. [37] proposed a new link-state

routing protocol PEFT, which splits traffic over multiple paths

with an exponential penalty on longer paths, with hop-by-

hop forwarding, with the objective of achieving optimal TE.

The authors of [15] proposed algorithms to solve a NUM

problem in a network with delay sensitive/insensitive traffic,

which is modelled by adding explicit delay terms to the

utility function measuring QoS. Einhorn et al. [5] proposed

a RL-based decentralized approach for QoS routing and TE

in MPLS networks. Recently, TE has been studied in the

context of SDN. For example, Jain et al. [13] presented design

and implementation of Google’s SDN-based WAN, B4, and

proposed a TE algorithm based on a bandwidth function for

data transmissions among its data centers. The authors of [2]

proposed approximation algorithms for TE problems with with

partial deployment of SDN. NUM, TE and/or related problems

have also been studied by quite a few works [4], [27], [34],

[39] in the context of wireless networks, which were mainly

focused on wireless-specific issues such as interference, time-

varying link states, etc. We summarize the differences from

these works as follows: 1) Unlike [25], [26], [37], [15] guided

by queueing models, we develop an expereience/data-driven

model-free approach based on DRL. 2) Related works [2],

[13], [17] have not explicitly addressed end-to-end delay,

which, however, is one of the major concerns of this paper. 3)

This paper considers a TE problem in general networks, which

is mathematically different from those problems in specific

networks/scenarios [2], [4], [5], [13], [27], [34], [39]. 4) We

are the first to leverage the emerging DRL for TE, which has

been shown to be very effective.

Deep Reinforcement Learning (DRL): DRL has recently

attracted extensive attention from both industry and academia.

In a pioneering work [20], Mnih et al. proposed DQN, which

can learn successful policies directly from high dimensional

sensory inputs. Particularly, they introduced two new tech-

niques, experience replay and target network, to improve

learning stability. The authors of [12] proposed Double Q-

learning as a specific adaptation to the DQN. The authors

of [30] proposed to use prioritized experience replay in DQN,

so as to replay important transitions more frequently, and

therefore learn more efficiently. In [35], Wang et al. presented

a new dueling neural network architecture, which includes two

separate estimators: one for the state value function and one

for the state-dependent action advantage function. The above

works were focused on discrete control with a limited action

space. Research efforts have also been made to extend DRL

to address continuous control. Lillicrap et al. [16] proposed

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1878



an actor-critic-based and model-free algorithm, DDPG, based

on the deterministic policy gradient that can operate over

continuous action spaces. Gu et al. [8] proposed normalized

advantage functions for reducing sample complexity. The

authors of [21] proposed asynchronous gradient descent for

optimizing learning with DNNs, and showed the successes

of asynchronous the actor-critic method on a wide variety of

continuous motor control tasks. In [9], the authors proposed a

policy gradient method Q-Prop, which uses a Taylor expansion

of the off-policy critic as a control variant. We aim to answer

the questions if and how the emerging DRL can be applied to

solving complicated control and resource allocation problems,

such as TE, in communication networks. Our work represents

the first effort along this line. Moreover, we introduce new

techniques on exploration and experience replay to optimize

the general DRL framework particularly for TE.

VII. CONCLUSIONS

In this paper, we proposed to use a novel experience-driven

approach for resource allocation in communication networks,

which can learn to well control a communication network from

its experience rather than an accurate mathematical model.

Specifically, we presented a novel and highly effective DRL-

based control framework, DRL-TE, to solve the TE problem.

The proposed framework enables experience-driven control

by jointly learning network dynamics, and make decisions

under the guidance of two DNNs, actor and critic networks.

Moreover, we proposed two new techniques, TE-aware explo-

ration and actor-critic-based prioritized experience replay, to

optimize the general DRL framework particularly for TE. We

implemented DRL-TE in ns-3, and conducted a comprehensive

simulation study to evaluate its performance on two well-

known network topologies, NSFNET and APRANET, and a

random topology. Extensive simulation results have shown that

1) compared to several widely-used baseline methods, DRL-

TE significantly reduces end-to-end delay and consistently

improves the total utility, while offering better or comparable

throughput; 2) DRL-TE is robust to network changes; and

3) DRL-TE consistently outperforms DDPG, which, however,

does not offer satisfying performance.
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