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Abstract—Crowdsensing enables a wide range of data collec-
tion, where the data are usually tagged with private locations.
Protecting users’ location privacy has been a central issue. The
study of various location perturbation techniques for protecting
users’ location privacy has received widespread attention. De-
spite the huge promise and considerable attention, the location
perturbation operation causes inevitable location errors, which
can diminish the location quality of the crowdsensing results.
Provable good algorithms that consider location quality in
privacy preserving crowdsensing from optimization perspectives
are still lacking in the literature. In this paper, we investigate the
problem of location quality optimization in privacy preserving
crowdsensing, which is to minimize the location quality desegre-
gation, while protecting all users’ location privacy. We present an
optimal algorithm OLoQ for this problem. Extensive simulations
demonstrate that OLoQ significantly outperforms an existing
algorithm in terms of the location quality and SSE.

I. INTRODUCTION

Over the last decade, there has been an explosion of smart
devices, e.g. smartphones and tablets. In 2015, there were
available 3.2 billion smartphone subscriptions, with 6.2 billion
predicted to be available in 2021 [14]. Current smart devices
are embedded with increasingly powerful processors and a
multitude of sensors (e.g., GPS, thermometer, microphone,
camera). The ubiquity of mobile devices into everyday life can
provide sufficient geographic coverage, especially in densely
populated areas. The crowdsensing paradigm has been pro-
posed to take advantage of the widely distributed mobile
devices for sensing and collecting ubiquitous data, such as
P-Sense to monitor air pollution [13], Nericell to sense road
and traffic conditions [20], and Ear-Phone to construct urban
noise maps [23]. The sensing data are usually tagged with
locations to form a database or map for information release.

It is essential to achieve location privacy protection, since
mobile users’ locations are tightly correlated with their identi-
ties and vulnerable to malicious attacks. Upon preserving lo-
cation privacy in crowdsensing, various methods are proposed
including information caching [25], spatial cloaking [29], data
perturbation with noise [35] and microaggregation [32]. The
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Figure 1: Location privacy preserving crowdsensing system

goal is to prevent the servers or platforms from inferring users’
actual locations. However, these privacy preserving methods
need to hide the users’ actual locations, which usually degrade
the location (information) quality [7].

Location privacy and location quality are two conflicting
concerns in crowdsensing. On the one hand, disclosing users’
actual locations to the platform may severely discourage their
participation, because users are increasingly wary of location
privacy. On the other hand, the platform desires the actual
locations of users to ensure the location quality. Therefore,
it is essential to optimize location quality in location privacy
preserving crowdsensing systems.

To quantify the impact of location privacy protection on
location quality, we define the location quality degradation
as the maximum distance between users’ actual locations and
their corresponding perturbed locations. The summation of
squared location errors (SSE) [26] has also been used to mea-
sure location quality in the literature. Although minimizing the
SSE is not our objective, our simulation results demonstrate
that a small location quality degradation also implies a small
SSE.

In this paper, we study the location quality optimization
in privacy preserving crowdsensing. Specifically, we focus on
the Location Quality Degradation Minimization (LQDM)
problem: minimizing the location quality degradation, while
protecting the location privacy for all users. We summarize
the main contributions as follows:

o To the best of our knowledge, we are the first to consider
the location quality optimization in location privacy pre-
serving crowdsensing systems.

o We study the problem of location quality degradation
minimization, while protecting the location privacy for
all users.

o We design OLoQ, an Optimal algorithm for Location
Quality desegregation minimization, while protecting the
location privacy for all users.
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« Extensive simulations demonstrate that OL0OQ not only
minimizes location quality degradation, but also outper-
forms an existing algorithm in terms of the summation
of squared location errors (SSE).

The remainder of the paper is organized as follows. In
Section II, we give a brief review of existing location privacy
preserving mechanisms in the literature. In Section III, we
formally introduce the system model and give a precise
problem description. In Section IV, we present a polynomial-
time optimal algorithm for LQDM and analyze its properties.
Section V demonstrates the experimental evaluations. Sec-
tion VI concludes this paper.

II. RELATED WORK
A. Location Privacy Approaches

There is a rich collection of literature on location privacy in
general frameworks. Surveys for location privacy-preserving
methods can be found in [5, 10]. Following the discussions
in [10], we classify location privacy-preserving techniques to
three types: location generation [3, 16, 34, 36], cryptographic
techniques [11] and differential privacy [15, 28]. Along the
line of location generation, various methods are proposed in-
cluding position dummies [16], mix zone [3], pseudonym [12],
and k-anonymity [34].

B. Location Privacy Preserving Crowdsensing

Much effort has also been made to protect location privacy
in crowdsensing systems [1, 9, 15, 19, 22, 30, 31]. This
line of work aims at preventing location privacy leakage
from sensing reports submitted by crowdsensing users. Gao
et al. [9] designed a partner selection algorithm and construct
several trajectories that are closer the user. Agir et al. [1]
proposed a scheme which estimated the expected location-
privacy level at the user-side locally in real-time, which
satisfies each user’s privacy requirement adaptively. Vu et
al. [30] utilized Voronoi diagram to partition a space into cells
that contain at least k users in each, without considering to
minimize the cloaking area. Differential location privacy in the
crowdsourced spectrum sensing was preserved in [15, 19, 31].
However, a significant problem neglected in these works is to
optimize the crowdsensing platform’s location quality, while
protecting the users’ location privacy.

C. Location Information Quality

As pointed by Krause et al. in [18], it is challenging to con-
trol location privacy with location privacy protection. Rodhe
et al. [24] reconstructed the data distribution and investigated
the impact of location privacy preserving mechanisms on the
quality of information. Xiao et al. developed a directed-graph
based cloaking algorithm for protecting location privacy in
location-based service, while meeting user-specified quality of
service requirements [33]. Murshed er al. proposed a subset-
coding scheme to achieve almost lossless data integrity in [21].

Another related topic is the microaggregation problem:
divide a data set into several disjoint subsets, such that the size
of each subset is more than k and the sum of squared error

is minimized. This problem aims to strike a balance between
privacy protection and information loss reduction [6, 17, 26].
However, the location quality degradation minimization is not
considered in the microaggregation problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model and give a
precise problem description.

A. System Model

We consider a location-based crowdsensing system con-
sisting of a set 4 = {1,2,...,n} of n users, a trusted
third party [28, 32] (e.g., a cellular service provider) and a
crowdsensing platform. Each user carries a mobile device with
sensing capabilities and wishes to earn rewards by completing
crowdsensing tasks. The user registers with the platform and
communicates with the platform via an app installed on his
mobile device. Developed by the platform, the app is assumed
to pass the strict vetting process of the trusted app store and
has no unauthorized access to the user’s locations.

We assume that the platform is honest but curious, which
is commonly used to characterize a reasonable crowdsensing
platform. In particular, the platform is trusted to follow the
protocol execution but is also interested in learning users’
locations. We assume that the platform can have arbitrary prior
knowledge for attempting to breach the users’ location privacy.

A precision-aware location privacy preserving crowdsens-
ing system is shown in Figure 1. The platform publishes
crowdsensing tasks and collects location-aware sensing data
from the users. The trusted third party, which is a cellular
service supposed to protect the location privacy. The workflow
of the system is as follows:

1) All the users report their actual locations £ =
{l1,1a,...,1,} to the trusted third party for location
privacy protection.

2) The trusted third party processes the actual locations and
reports a set of perturbed locations {h1, ha, ..., hy,} to
the platform, where a perturbed location h; is tagged to
at least k users.

3) The users tagged with perturbed locations are reported
to the platform, and the rest users are discarded.

B. Problem Formulation

To formally formulate our studied problems, we introduce
the following necessary concepts. In order to preserve location
privacy, one solution is to make a user’s location indistinguish-
able from at least kK — 1 others’ locations. This property is
proposed in [27] and called k-anonymity.

k-anonymity: To protect user’s privacy, k-anonymity re-
quires that at least k reports are combined together before
releasing.

Location perturbation: Location perturbation is defined as
deliberately degrading the quality of location information
about a user’s location in order to protect that user’s location
privacy.



Figure 2: A toy example of depth, dp (. ) (p)

Location quality degradation: The location quality degrada-
tion is the maximum distance between users’ actual locations
and their corresponding perturbed locations.

Perturbed group: A perturbed group is a set of users S C U
tagged with the same perturbed location, denoted by (h,S),
satisfying k-anonymity.

Apparently, the perturbation operation for protecting users’
location privacy causes inevitable location errors, which can
diminish the location quality of the crowdsensing results.
Therefore, it is essential to control the location quality
degradation while preserving users’ location privacy. Towards
this goal, we consider the following optimization problem
Location Quality Degradation Minimization (LQDM) in
this paper: Given a set of n users’ actual locations and an
integer k < n, form a set of perturbed groups, denoted
by H, including all users to minimize the location quality
degradation.

Note that in the literature, the summation of squared loca-
tion errors (SSE) [26] has been used to measure data quality.
In this paper, we use the location quality degradation, because
even if the SSE is small, some large errors are still detrimental
to the crowdsensing application. Whereas, a small location
quality degradation guarantees that none of the errors exceeds
this value. Although we do not focus on minimizing the SSE,
extensive simulations show that our algorithm achieves a lower
SSE, compared to an existing k-anonymity location privacy
preserving algorithm.

C. Geometric Problem Transformation

LQDM can be transformed into an equivalent geometric
problem. Before the transformation, we introduce the follow-
ing definition.

Let P denote a plane. For any two points p € P and g € P,
we use ||p, ¢|| to denote the Euclidean distance between p and
g- A disk centered at ¢ of radius r is denoted by D(c, ). We
say D(c,r) covers p, if p € D(e,r), ie., ||p,c|] < r. Let
B(e,r) denote the closed boundary of D(c,r). Given a set
L of n points, let D(L,r) denote a set of disks of radius r
centered at points in L.

Definition 1 (k-enclosing Disk). Let L be a set of n points
on the plane P. Given an integer k < n, a k-enclosing disk
is a disk that covers at least k points in L.

The transformed LQDM problem is: Given a set £ of n
points on the plane P and an integer £ < n, find a minimum r
and a set of k-enclosing disks D = {D(hy,7), D(ha,7),...},
such that any /; € £ is covered by at least one disk in D.
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Figure 3: Comparison between r and r; (k = 3,7 =5)

To solve these problems, we need the following definitions
and claims from [8].

Definition 2 (Depth of a Point). Given a point p € P and
a disk set D(L,r), the depth of p with respect to D(L,r),
denoted by dpr .y (p), is the number of disks in D(L,r)
covering p.

Figure 2 gives an example of calculating the depth of a
point p.

Definition 3 (Depth of a Disk). Given a point l; € L and a
disk set D(L,r), the depth of D(l;,r), denoted by dp, ), is
the maximum depth of all points p € D(l;,r):

dpq,ry = max ){dD(E,r)(p)}'

pED(li,r
Claim 1. Given two points p,q € P, p € D(q,r) if and only
if g € D(p,7).

Claim 2. The depth of a point p € P in D(L, ) is the number
of points in L covered by D(p,r).

In addition, we provide the following definition and lemma.

Definition 4 (Critical Radius). Given any l; € L, a radius r
is a critical radius, if dp, ) decreases, when 1 is decreased
by an arbitrarily small amount.

Lemma 1. A point I; € L is covered by a k-enclosing disk
D(p,r) for some p € P and some r, if and only if there exists
p € D(l;,7), such that dpr . (p) > k.

Proof. Suppose [; € L is covered by a k-enclosing disk
D(p,r). Then we know p € D(l;,r) by Claim 1, and
dp(z,ry(p) > k. Suppose there exists p € D(l;,r), such that
dpz,ry(p) > k. We can know at least k points in L are
covered by D(p,r), according to Claim 2. Thus D(p,r) is a
k-enclosing disk, and we know [; € D(p,r) by Claim 1. This
completes the proof. ]

At last, we have three geometrical facts as follows.

1) The point on D(l;,r) with maximum depth must be
an intersection point on B(l;,r), if B(l;,r) intersects
with the boundary of any other disk in D(L,r). Then
we only focus on the intersection points on B(l;,r) for
computing dp; r)-



2) Given any l; € L, let r} denote the minimum radius
r, such that dp(, ) > k. We can locate r; within a
feasible range of r using the following criteria:

. dD(l,i,r) <k—->r< ’l“;»k;
e dp,y >k —1r>1}
. dD(li,r) =k —=r > ’I“;»k.
Figure 3 gives a example of how the value of dp(; )
can derive the comparison between 7 and ;.

3) A radius r can be a critical radius only if B(l;,r)
is tangent to B(l;,r), or B(l;,r) is concurrent with
B(lj,r) and B(lg,r), where l;,1;,l; € L. In other
words, a critical radius is either 3||l;,1;]|, denoted by
755, or a circumradius of a triangle with [;, [; and [, as
the vertices, denoted by 7.

The main notations are summarized in Table 1.

Table 1: Main notations

Notation Meaning
u a set of users {1,2,...,n}
(h,S) a perturbed group, where all users in S are tagged with h
H a set of perturbed groups
P a plane
l; the actual location (a point on P) of user %
L the set of actual locations (points on P) of users in U
D(p,r) the disk of radius 7, centered at p € P
D(L,r) the set of disks with radius r, centered at points in £
dp(c,r(p)  the depth of a point p with respect to D(L, r)
dp(;,r) the depth of a disk D(l;,7)
B(p,r) the closed boundary of D(p,r)

Ty the minimum radius of a k-enclosing disk to cover /;
%

Jon the center of the smallest k-enclosing disk to cover I;

IV. AN OPTIMAL ALGORITHM FOR LQDM

In this section, we present an efficient optimal algorithm
OLoQ for the LQDM problem.

A. Overview

Since r; is the minimum radius, such that I; is covered
by a k-enclosing disk, the minimum radius in the optimal
solution to the LQDM problem equals max;,c. r;, denoted
by r*. Thus the LQDM problem boils down to finding r; for
each [; € L. Based on Fact 2) in Section III-C, it is necessary
to determine a range in order to locate r}. To locate the exact
value of 7}, we need to discretize its range. By the definition
of critical radius, r; must be a critical radius of /;. Thus we
focus on critical radii and conduct a binary search among
them for locating r}. According to Fact 3), a critical radius
of I; can only be r;; or 15, where l;,l, € L,i # j # k.
Once r; is located, we find the point of maximum depth on
D(l;,r}), denoted by p;. Then a set of k-enclosing disks D =
{D(pf,r*) | l; € L} can cover all I; € L. However, not all
disks in D are necessary. Thus we select a minimal D* C D
covering all points in £. The centers of the selected disks are
the perturbed locations.

B. Algorithm Design

OLoQ includes one key algorithm to find the smallest k-
enclosing disk covering [; € £, illustrated in Algorithm 1.

In Algorithm 1, we narrow the range where 7} can lie and
locate ;. To narrow the range where r; can lie, we collect
the n — 1 values of r;; and sort them in a non-decreasing
order. Note that each r;; is corresponding to a tangent point
pi;j of B(l;,r;;) and B(l;,1;;), which is the midpoint of line
lil;. Then the range can be narrowed to (r;;, 7ij]-

Then we collect W values of r;;, and only keep
the values of r;;;, within the range (r;;,7:;]. If there is no
;55 within this range, then r; is 7;; and its corresponding
p; is p;j. Otherwise, we sort the values of 7;;;, within the
range (gij, Fij] in a non-decreasing order. Note that each 7,
is corresponding to a point p;;;, which is the circumcenter
of the triangle with [;, I; and [} as the vertices. Using binary
search, we further restrict the range to (r; ;,, x|, which is the
smallest range such that dD(li,ij) < k and dp(, 7,,,) = k-
Therefore 7} is 7,1, and p; is the P;; corresponding to 7.

At the end, Algorithm 1 outputs (1}, p;), which forms the
smallest k-enclosing disk D(r}, pf) that covers [;. We shall
run Algorithm 1 for each I; € £. Then the minimum radius
in the optimal solution to the LQDM problem is max;,c. 7} .

Algorithm 1: Find-k-enclosing-Disk(l;, k, £)

1 Sort all values in {r;; | ; € L\{l;}} in a non-decreasing
order and obtain a sorted list I2;;;

2 Run a binary search in R;; to find two consecutive
values of r;;, denoted by Tij and 7;;, such that
dD(th:jk) < kand dpq, ;) > k;

3 Sort all values in {ryx | 7ijx € (35, 7i5],ljs (e € L\{li}}

in a non-decreasing order and obtain a sorted list IZ;;y;
if Rijk = @ then
‘ Ti 4 Tijy Di 4 Dij

else

Run a binary search in R;;; to find two consecutive
values of r;;, denoted by Tiik and 75, such that
dD(l“ij) < k and dD(l y 2> k;

8 'f‘:f — Tijk; pf < Dijks

9 end

10 return (v}, p})

N & B

isTijk

Next, we generate a set of k-enclosing disks D* =
{D(h1,r*),D(ha,7*),...}, such that any Il; € L is
covered by at least one disk in D*. By the previous
steps, we can obtain a set of k-enclosing disks D =
{D(p3,r*), D(p},r*),...,D(p},r*)} covering all points in
L. However, not all of them are necessary. So we design
Algorithm 2 to select a minimal D* C D covering all points
in £. The idea is to select disks iteratively. In each iteration
we select a disk covering as many points as possible. Thus
we sort n values of r; for all [; € £ in a non-increasing order
and select disks sequentially according to the sorted list. If /;
has not been covered, we add D(p},r*) to D*. For all users
whose actual locations are covered by D(p},r*), we form a
perturbed group with p; as their perturbed location.

We now analyze the running time of OLOQ. The time
complexity of Algorithm 1 is dominated by two times of



Algorithm 2: OLoQ (L, k)

1 H <+ 0; D* + 0

2 for I; € L do

3 r} + Find-k-enclosing-Disk( {;, k, L );
4

5

r* 4 maxy e
Sort points in £ based on 7} in a non-increasing order
and obtain a sorted list L;
6 for [; € L do
7 if [; is uncovered by D* then
8 D* <~ D*U{D(p:,r*)};
) H e HU{) 1 | 1 € Dl )} s
10 end
11 end
12 return (H,r*)

binary search. Each binary search needs to calculate disk
depth, which takes O(n?) time. Hence the time complexity
of Algorithm 1 is O(n?logn). The time complexity of Al-
gorithm 2 is dominated by computing r; for each [; € L.
Therefore, the overall time complexity is O(n3logn).

C. Algorithm Analysis
The following theorem guarantees OLOQ’s optimality.

Theorem 1. OLoQ returns an optimal solution to the LQDM
problem.

Proof. We first prove that each user : is tagged with the same
perturbed location as at least k — 1 other users and then prove
that 7* is the minimum location quality degradation.

For each /; € L, it guarantees that dp(, ) > k, based
on Lines 2 and 7 in Algorithm 1. Since p; is the point with
maximum depth on D(l;,r}), we have dp( ) (p;) > k. By
Claim 2, D(p},r}) covers at least k points in £. By Claim
1, we have I; € D(pf,rf). With * > rf, we know that
D(ps,r*) covers at least k points in £ and I; € D(p},r*), as
well. Thus there are at least k users in each perturbed group
(pr,{i | l; € D(pf,r*)}). Therefore each user i is tagged with
the same perturbed location with at least £ — 1 other users.

We know there must exist at least one point [; € L, such
that v} = *. In addition, it guarantees that r is the minimum
radius, such that dD(li,T;‘) > k, based on Lines 2 and 7
in Algorithm 1. We learned from the above proof that r;
is therefore the minimum radius, such that user ¢ is tagged
with the same perturbed location as at least k — 1 other users.
Therefore r* is the minimum radius to satisfy k-anonymity

for all users. [ |

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of OLoQ by
comparing it with an existing k-anonymity location privacy
preserving algorithm [32].

A. Evaluation Setup

As we surveyed in Section II, there is no existing algo-
rithm that aims to minimize the location quality degradation.
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Figure 5: Impact of & on OLoQ and VCLA.

The most related work for k-anonymity location privacy is
VCLA [32], which is a heuristic algorithm that uses the
microaggregation approach to obtain anonymized locations
and aims to minimize the summation of squared errors (SSE).

We use the CRAWDAD dataset roma/taxi [2, 4] for our
simulations. The dataset contains the mobility traces of ap-
proximately 320 taxis collected over 30 days in Rome, Italy.
Each mobility trace consists of a sequence of GPS coordinates
collected roughly every seven seconds along with correspond-
ing timestamps.

B. Performance Metrics

We are interested in the following performance metrics.

o SSE: Suppose a point set L is divided into m groups. The
sum of squared errors of perturbed group j is defined as:

sse; = [(xjp — 2;)° + (yjp — 7;)°]
p=1

where n; is the number of users in j-th group satisfying
nj > k, (Tjp,y;p) is the location of the pth user with
(z;,7y;) the perturbed location of j-th group. The SSE is
the sum of sse;:

SSE =Y sse; =3O l(wjp—7;)* + (yip — 7)),
Jj=1 j=1p=1

where SSE describes the overall group homogeneity
after group formation. When nearby points are grouped
together, SSE will be small and the groups are more
homogeneous.

o Location quality degradation: The location quality degra-
dation is the maximum distance between users’ actual
locations and their corresponding perturbed locations.

In our evaluation, we show the impact of the number of

users (n) and £ on OLoQ and VCLA in terms of SSE and



location quality degradation. For the impact of n, we vary it
from 200 to 1000 with an increment of 200, fixing k£ = 5. For
the impact of k, we set it to be 2,3,5,7, 10, fixing n = 400.
All results are averaged over 100 independent runs.

C. Evaluation Results and Analysis

Figure 4 shows the impact of n. Figure 4(a) shows that
OLoQ can always introduce lower SSE, which is essential
to obtain accurate sensing data. Besides, SSE increases with
n, because sparser location distribution leads to larger errors.
In Figure 4(b), the location quality degradations of OL0oQ
and VCLA decrease with n. We also observe that OLoQ out-
performs VCLA, especially with fewer users, because OL0Q
minimizes the location quality degradation, while VCLA
heuristically aggregate locations by choosing the farthest point
and then aggregating the nearest points to it.

Figure 5 shows the impact of k. Figure 5(a) illustrates
that the SSE gradually increases with more stringent privacy
protection. To protect more users’ locations in one perturbed
group, it is inevitable to diminish the location quality to some
degree. OLoQ has a lower SSE, because it minimizes the lo-
cation quality degradation. From Figure 5(b), we observe that,
OLoQ outputs perturbed groups with the minimum location
quality degradation and significantly outperforms VCLA. The
common trend is the location quality degradation increases
with more stringent privacy protection .

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the location quality optimiza-
tion problem in location privacy preserving crowdsensing,
Extensive simulations show that OLOQ not only achieves the
minimum location quality degradation, but also outperforms
an existing algorithm in terms of SSE.
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