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a b s t r a c t 

In cognitive radio networks (CRNs), dynamic spectrum access has been proposed to improve the spectrum 

utilization, but it also generates spectrum misuse problems. One common solution to these problems is 

to deploy monitors to detect misbehaviors on certain channel. However, in multi-channel CRNs, it is very 

costly to deploy monitors on every channel. With a limited number of monitors, we have to decide which 

channels to monitor. In addition, we need to determine how long to monitor each channel and in which 

order to monitor, because switching channels incurs costs. Moreover, the information about the misuse 

behavior is not available a priori. To answer those questions, we model the spectrum monitoring problem 

as a combinatorial adversarial multi-armed bandit problem with switching costs (MAB-SC), propose an 

effective framework, and design two online algorithms, SpecWatch-II and SpecWatch-III, based on the 

same framework. To evaluate the algorithms, we use weak regret , i.e., the performance difference between 

the solution of our algorithm and optimal (fixed) solution in hindsight, as the metric. We prove that the 

expected weak regret of SpecWatch-II is O ( T 2/3 ), where T is the time horizon. Whereas, the actual weak 

regret of SpecWatch-III is O ( T 2/3 ) with probability 1 − δ, for any δ ∈ (0, 1). Both algorithms guarantee the 

upper bounds matching the lower bound of the general adversarial MAB-SC problem. Therefore, they are 

all asymptotically optimal. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the proliferation of wireless devices and applications, de-

mand for access to spectrum has been growing dramatically and

is likely to continue to grow in the foreseeable future [1] . How-

ever, there is a paradoxical phenomenon that usable radio frequen-

cies are exhausted while much of the licensed spectrum lies idle

at any given time and location [2] . To improve the radio spec-

trum utilization efficiency, dynamic spectrum access (DSA) in cog-

nitive radio networks (CRNs) has been proposed as a promising

approach. Among various DSA strategies, opportunistic spectrum

access (OSA) based on the hierarchical access model has received

much attention recently [3–10] . This underlay approach achieves

spectrum sharing by allowing secondary (unlicensed) users (SUs)

to dynamically search and access the spectrum vacancy while

limiting the interference perceived by primary (licensed) users

(PUs) [11] . 
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OSA helps to improve the spectrum utilization but also results

n spectrum misuse or abuse problems due to the flexibility of

pectrum opportunity. For example, an SU may intentionally dis-

bey the interference constraints set by the PU; or some greedy

Us may transmit more aggressively in time and frequency to

ominate the spectrum sharing, or even emulate the PU to prevent

ther SUs from sharing. Through such spectrum access misbehav-

or, the malicious users (MUs), i.e., the misbehaving SUs, not only

arm the spectrum access operations of normal users, but also im-

ede the CRNs to function correctly since there is no incentive to

ay for spectrum access [12] . Thus, spectrum monitoring is neces-

ary and imperative. 

To address the spectrum misuse problem, different trusted in-

rastructures have been proposed to detect spectrum misuse and

unish MUs [12–15] . In addition, various detection techniques

ave been designed, including enforcing silence slots [16] , publi-

izing back-off sequences [17,18] , exploiting spatial pattern of sig-

al strength [19] , measuring detector value [20] . There is also a

rowdsourcing-based framework named SpecGuard [21] which ex-

lores dynamic power control at SUs to contain the spectrum per-

it in physical layer signals. Another crowdsourced enforcement
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ramework [22] improves the probability of detection while re-

ucing the likelihood of false positives for spectrum misuses and

t can detect misuses caused by mobile users. Moreover, apply-

ng big data analysis and machine learning to cloud-based radio

ccess networks also provide an appropriate approach to enable

ong-term spectrum monitoring [23] . 

However, all these works assume that all channels can be moni-

ored at the same time. But monitoring all channels simultaneously

s very energy-consuming and impractical. Therefore, in this pa-

er, we consider spectrum monitoring in multi-channel CRNs with

imited monitoring resource. In particular, we deploy one monitor

ith multiple radios where each radio is in charge of one channel,

hen make the best choice when choosing channels. 

This channel selection problem is challenging because of the

ollowing reasons: 

1. The information of MUs is unknown a priori. The monitor can-

not know whether a channel is under attack or not unless it

monitors the channel for a while. As a result, the monitor must

balance between exploring new channels and exploiting chan-

nels which are frequently attacked. 

2. The monitor needs to avoid switching too much since each time

the monitor changes its monitoring channels, there are drastic

costs in terms of delay, packet loss, and protocol overhead [24] .

When switching costs are considered, the balance between ex-

ploration and exploitation is more complicated. 

3. We consider the smart MUs (details in Section 3 of adaptive ad-

versary in the threat model) which can adaptively change their

attacking behaviors. MUs of this type are much more powerful

than MUs in existing literatures where there exists some fixed

probability distribution on how the MUs will attack the system.

4. The monitor may not be perfect and it may cause detection er-

rors. 

5. The monitor in our model can has more than one radios, which

enable it to monitor multiple channels at the same time. How-

ever, this makes the number of choices become combinatorial. 

To conquer all these challenges, we formulate the problem as

 combinatorial adversarial (non-stochastic) multi-armed bandit

MAB) problem [25] with switching costs. We then propose an ef-

ective spectrum monitoring framework and design two online al-

orithms based on it. 

In summary, we contribute in the following aspects: 

1. We study the adversarial spectrum monitoring problem with

unknown statistics in multi-channel CRNs, while considering

the switching cost. We model this problem as an combinatorial

adversarial MAB-SC problem. 

2. We propose an online spectrum monitoring framework,

SpecWatch. Based on this framework, we design two spectrum

monitoring algorithms, SpecWatch-II and SpecWatch-III, which

differ in the way of calculating strategy probabilities and up-

dating strategy weights. Our algorithms guarantee the proved

performance under any type of adversary settings. In addition,

they can work with any spectrum misuse detection techniques

in the current literature. 

3. We prove that the expected weak regret of SpecWatch-II is

O ( T 2/3 ), which matches the lower bound in [26] . Therefore,

SpecWatch-II is asymptotically optimal. Note that the expected

value of normalized weak regret is guaranteed to be O (1/ T 1/3 ),

which converges to 0 as time horizon T approaches to ∞ . 

4. SpecWatch-III select channels more strategically and explore all

channels more efficiently. We prove that this algorithm guaran-

tees the actual weak regret to be O ( T 2/3 ), which is asymptoti-
cally optimal as well, with probability 1 − δ, for any δ ∈ (0, 1). r
. Related work 

.1. Spectrum monitoring problem 

In this paper, we focus on the algorithm to determine the chan-

els to choose, which is closely related to the sniffer-channel (snif-

ers are also referred to as monitors) assignment problem [27] in

ireless networks. 

In [28] , Yeo et al. were the first to develop a framework exploit-

ng dedicated sniffers to monitor WiFi networks and identify mali-

ious usages. Cheng et al. [29,30] proposed an infrastructure and

odeling techniques to monitor and analyze network behavior.

n [31] , Shin and Bagchi modeled the channel assignment for mon-

toring wireless mesh networks as maximum-coverage problem

ith group budget constraints. They then extended it to the model

here monitors may make errors due to poor reception [32] . Along

he same line, Nguyen et al. [33] focus on the weighted version

f the problem, where users to be covered have weights. To maxi-

ize the captured data of interest, Chen et al. [34] utilized support

ector regression to guide monitors to intelligently select chan-

els. Considering similar objectives, Shin et al. [35] designed a

ost-effective distributed algorithm. With a different approach, Yan

t al. [36] solved the problem by predicting secondary users’ access

atterns. Li et al. [37] further considered the physical restrictions

f the sniffers and formulated the problem as a new optimization

roblem. 

However, all the above papers have different objectives and re-

uire more prior knowledge on network users. 

The closest works to ours were presented in [38–42] . In [38] ,

rora et al. first modeled the spectrum monitoring problem as

n multi-armed bandit problem (MAB) to monitor the maximum

umber of active users. They designed two algorithms to learn se-

uentially the user activities while making channel assignment de-

isions. Observing the above algorithms suffer from high compu-

ation cost, Zheng et al. [39] traded off between the rate of learn-

ng and the computation cost. They proposed a centralized online

pproximation algorithm and show that it incurs sub-linear regret

ounds over time and a distributed algorithm with moderate mes-

age complexity. In [40] , Le et al. considered switching costs for

he first time and utilized Upper Confident Bound-based (UCB) pol-

cy [43] which enjoys a logarithmic regret bound in time that de-

ends sublinearly on the number of arms, while its total switch-

ng cost grows in the order of O (log (log T )). Considering a different

bjective, Yi et al. [41] used UCB to capture as much as interested

ser data. However, these works used the stochastic MAB model,

here the rewards for playing each arm are generated indepen-

ently from unknown but fixed distributions. In other word, they

ll assume the user activities are time invariant. Our model, in con-

rast, does not make such assumptions. 

The only work considered the similar problem model to ours

s [42,44] , where Xu et al. tried to capture packets of target SUs for

RN forensics. However, they did not provide any algorithm whose

ctual weak regret can be bounded with confidence value. 

.2. Multi-arm bandit problem 

The MAB problem first introduced by Robbins [45] has been ex-

ensively studied in the literature. The classical MAB problem mod-

ls the trade-offs faced by a gambler who aims to maximize his

ewards over many turns by exploring different arms of slot ma-

hines and to exploit arms which have provided him more rewards

han others. The gambler has no knowledge about the reward of

ach arm a priori and only gains knowledge of the arms he has

ulled. An MAB algorithm should specify a strategy by which the

ambler chooses an arm at each turn. The performance of an algo-

ithm is measured in regret, as will be elaborated in Section 3 . 
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Fig. 1. Our problem considers combinatorial arms, adaptive adversary, and switch- 

ing costs. 
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There are mainly two algorithm families based on different for-

mulations of MAB. The upper confidence bounds (UCB) family of

algorithms [46] works for stochastic MAB, whose regret can be as

small as O (ln T ) where T is the number of turns. However, these

algorithms are established with the assumption that there exist

fixed (though unknown) probability distributions of different arms

to generate rewards, which may not be satisfied in our spectrum

monitoring problem and thus not considered by us. The other al-

gorithm family is the EXP3 family [25] for adversarial MAB. Auer

et al. [25] has studied MAB with no assumption on the rewards

distribution and proposed algorithms with regret of O ( T 1/2 ). The

adversarial MAB is one of the strongest generalizations of the ban-

dit problem [47] . There are also some algorithms considering both

stochastic and adversarial adversary [4 8,4 9] . 

However, switching costs are not considered in all above works.

In our model, each time the monitor changes its monitoring

channels, there are drastic costs in terms of delay, packet loss, and

protocol overhead [24] . These costs must be taken into considera-

tion when designing monitoring algorithms. Although there exists

some work on stochastic multi-armed bandit problem with switch-

ing cost (MAB-SC) [24] , little research has been done on adversarial

MAB-SC. Dekel et al. [26] proved the lower bound of the regret for

adversarial MAB-SC to be ˜ � ( T 2/3 ). In this paper, the upper bound

of regret guaranteed by our algorithms matches this lower bound. 

Moreover, different from existing works, the strategy for each

turn (or timeslot as in our model) is no longer a single arm be-

cause we consider a more general case where multiple channels

(called super arm in many other papers) can be monitored at the

same time. This makes our problem an instance of all combi-

natorial multi-armed bandit (CMAB) problems ( Fig. 1 ). There are

many challenges raised by the combinatorial nature of super arms.

First, the exploration of all super arms requires much more heavy

computational costs due to the combinatorial exploded number of

super arms. Second, the revelation of good super arms becomes

harder due to a more complicated reward structure, especially with

the existence of detection errors. Therefore, directly treating ev-

ery super arm as an arm and simply applying the classical MAB

framework is not a good approach. A better solution is to utilize

the observed information regarding the outcomes of each basic

arm, which may be shared by other super arms. However, existing

CMAB algorithms [50,51] only work for stochastic MAB problems. 

In all, none of existing algorithms can be directly applied to our

problem. 

3. System model and problem statement 

We consider a cognitive radio network which adopts a hier-

archical access structure with primary users (PUs) and secondary
sers (SUs). We assume the spectrum is divided into a set K =
 1 , 2 , . . . , k, . . . , K} of K channels. The total time period is dis-

retized into a set T = { 1 , 2 , . . . , t, . . . , T } of T timeslots. Ideally,

Us seek spectrum opportunities among K channels in a non-

ntrusive manner. However, the malicious users (MUs) may per-

orm unauthorized access or selfish access. We consider the sce-

ario where there exists one monitor with l radios and a set

 = { 1 , 2 , . . . , m, . . . , M} of M MUs. Note that for the case of mul-

iple monitors, if there is a central controller, it is equivalent to one

onitor with the same number of radios; otherwise, each monitor

an execute our algorithms independently. In the latter case, how-

ver, the regret may not be bounded. 

Since the monitor is equipped with l radios, it can monitor up

o l channels at the same time. Assume that one radio is tuned to

onitor channel k , and there are M k MUs on that channel, then the

etection probability of that radio to successfully detect MUs’ pres-

nce is p d ( M k ), which is dependent on the monitor’s hardware and

he detection technique. Any technique in [16–20] can be adopted

o detect spectrum misuses. In practice, the detection probability

ill also be dependent on the presence of PU and other SUs. How-

ver, since our algorithms do not require the knowledge of the

etection probability, we simplify the notion to p d ( M k ) where it

eems that only M k matters. 

Let { 0 , 1 , . . . , l} K denote the strategy space of the monitor. A

trategy s is represented as (a s 1 , a s 2 , . . . , a sK ) , where the value of

he a sk is 1 if a radio is assigned to monitor channel k , 0 other-

ise. Therefore, 
∑ 

k ∈K a sk = l. For example, considering 4 channels

nd a monitor with 2 radios, strategy (0, 1, 0, 1) indicates that one

adio is tuned to monitor channel 2 and the other radio is tuned

o monitor channel 4. For notational simplicity, we will write k ∈ s

nstead of a sk = 1 to denote that channel k is chosen in strategy s .

ince each radio is assigned one out of K channels to monitor, and

e have l radios in total, the number of strategies is S = 

(
K 
l 

)
. The

hole strategy set is represented as S = { 1 , 2 , . . . , s, . . . , S} . Note

hat K and l are usually small. For example, the regulated 2.4 GHz

and is divided into only 14 channels. The maximum number of

adios on each monitor defined by the active IEEE 802.11af stan-

ard is set to be 4 [52] . 

In this paper, we assume both the monitor and MUs are static,

.e., staying at the same location. Note that when mobility is con-

idered as in the pursuit-evasion problems [53] , we only need to

nlarge the strategy space by including the location dimension. 

At the beginning of timeslot t ∈ T , the monitor selects only one

trategy from the strategy set S, and we denote the chosen strat-

gy as X t . We assume the switching cost c(X t−1 , X t ) ∈ [ 0 , 1 ] , but

ur algorithm can be generalized to any range [ c , ̄c ] , c < c̄ by scal-

ng, where c and c̄ are the minimum value and the maximum value

f the switching cost, respectively. For simplicity, set the switching

ost of the first timeslot to be c(X 0 , X 1 ) = c 0 regardless of what X 1

s. Clearly, c(X t−1 , X t ) = 0 if X t−1 = X t . 

Threat model: At each timeslot t ∈ T , each MU m ∈ M chooses

ne channel to attack (conduct misuses) according to its attack

robability distribution P 

m 

t = 

{
P m 

t, 1 
, . . . , P m 

t,K 

}
where P m 

t,k 
denotes the

robability of MU m attacking channel k in timeslot t . Since MUs

ay not attack in some timeslot, 
∑ 

k ∈K P m 

t,k 
≤ 1 for any m ∈ M and

 ∈ T . We consider two types of adversary: 

1. Oblivious adversary (Stochastic): The MUs keep their attack

patterns regardless of how the monitor work. For any MU m ,

the attack distribution P 

m 

t remains the same throughout the

time horizon. In this paper, we consider three different adver-

sary settings (elaborated in Section 7 ): fixed adversary, uniform

adversary, and normal adversary. 

2. Adaptive adversary (Adversarial): The MUs know every action

of the monitor from the beginning to the current timeslot and
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Fig. 2. Example of batching timeslots with batch size τ = 4 . 
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adjust their strategies accordingly based on any learning algo-

rithms, i.e., the attack distribution might change with time. 

Our framework and algorithms work for both types and the

heoretical bounds hold no matter what the adversary type is. 

Now we define the reward for the monitor. The strategy reward

f choosing strategy s in timeslot t is 

 s,t 
def = 

{∑ 

k ∈ s f k,t if s = X t , 

0 otherwise, 
(1) 

here the channel reward f k, t is defined as 

f k,t 
def = 

{
r if channel k ∈ X t and misuse is detected , 

0 otherwise, 
(2) 

here the unit reward r is assumed to be scaled and satisfies rl ≤ 1

or the purpose of mathematical analysis. Note that the probabil-

ty of at least one MU being detected on monitored channel k is

etermined by the number of radios on that channel M k , the de-

ection probability p d ( M k ) and the action of MUs { P m 

t,k 
} M 

m =1 . We de-

ote the detection probability on channel k by adopting strategy

 t at timeslot t as P d 
(
a X t k , p d (M k ) , { P m 

t,k 
} M 

m =1 

)
which is assumed to

e a non-decreasing function in a X t k , p d ( M k ), and P m 

t,k 
. Thus, the

hannel reward f k, t is r with probability P d 
(
a X t k , p d (M k ) , { P m 

t,k 
} M 

m =1 

)
.

ote that the knowledge of this probability is not required. 

Assume the monitor follows X 1 , X 2 , . . . , X T , which is the strategy

equence generated by any monitoring Algorithm A. At the end of

imeslot T , the cumulative strategy reward is 

 A 

def = 

T ∑ 

t=1 

g X t ,t . (3) 

eanwhile, the monitor incurs cumulative switching cost 

 A 

def = 

T ∑ 

t=1 

c(X t−1 , X t ) . (4)

hus, the utility of the monitor by choosing Algorithm A is 

 A = G A − L A . (5)

To measure the performance of Algorithm A, we use a special

ase of the worst-case regret, weak regret [25] , as the metric. 

The weak regret of Algorithm A is the difference between the

tility by using best fixed algorithm and the actual utility by us-

ng Algorithm A. A fixed algorithm chooses only one strategy for

ll timeslots and never switches. The best fixed algorithm is the

ne resulting in the highest utility among all fixed algorithms. The

trategy chosen in best fixed algorithm is called the best strategy ,

enoted by s best . Formally, s best 
def = argmax s ∈S 

(∑ T 
t=1 g s,t − c 0 

)
, and

he utility by using the best fixed algorithm is 

 best 
def = G best − L best , (6) 

here G best = max s ∈S 
∑ T 

t=1 g s,t and L best = c 0 since the switch only

appens at the first timeslot. Note that the best strategy can only

e found in hindsight. 

Now we can define the weak regret of Algorithm A as 

 A 

def = U best − U A . (7) 

roblem statement: Given K channels, time horizon T , and a

onitor with l radios, our objective is to design online spectrum

onitoring algorithms such that the weak regret is minimized,

n the presence of different adversaries. We make no assump-

ion on the knowledge of the probability functions p d ( M k ) and

 d 

(
a X t k , p d (M k ) , { P m 

t,k 
} M 

m =1 

)
. In addition, the attack distribution P 

m 

t 

nd the reward of choosing a strategy are unknown a priori. 

Therefore, any desired algorithm needs to balance not only the

rade-off between exploration and exploitation, but also that be-

ween strategy rewards and switching costs. This is a very chal-

enging problem. 
. Spectrum monitoring framework 

In this section, we design SpecWatch, a spectrum monitor-

ng framework, based on the batching version of exponential-

eight algorithm for exploration and exploitation, where the idea

f batching is inspired by Arora et al. [54] . 

To control the trade-off between the reward and the switch-

ng cost, we group all the timeslots into consecutive and disjoint

atches. Within each batch, we stick to the same strategy to avoid

he switching cost. Between batches, we reselect a strategy to gain

igher rewards. A smaller batch size may result in larger reward

ut larger switching cost, while a bigger batch size may result in

maller switching cost but smaller reward. 

The design details of SpecWatch are illustrated above. We first

et the initial weight of each strategy to be 1. Given the batch size

, the timeslots 1 , 2 , . . . , T are divided into J = � T /τ� consecutive

nd disjoint batches. Let [ j] = ( j − 1) τ for 1 ≤ j ≤ J . Then the j th

atch starts from timeslot [ j] + 1 and ends at timeslot [ j] + τ as

hown in Fig. 2 . At the beginning of each batch, we calculate the

trategy probabilities according to strategy weights. Then we ran-

omly select a strategy based on the probability distribution. Dur-

ng the whole batch, the chosen strategy remains the same. At the

nd of each batch, strategy weights are updated according to the

trategy rewards. 

In the following sections, we design two effective online

pectrum monitoring algorithms, SpecWatch-II and SpecWatch-

II. These two algorithms are designed based on SpecWatch

nd SpecWatch 

+ in our paper [55] . We rename SpecWatch

nd SpecWatch 

+ to SpecWatch-I and SpecWatch-III, respectively.

e introduce SpecWatch-II in this paper and omit SpecWatch-

 because SpecWatch-II has better theoretical performance than

pecWatch-I. 

The main notations are summarized in Table 1 . All sets are in

ath calligraphy ( K, T , J , M , S, C). All timeslot-related notations

re corresponding to t , such as X t , f k, t . Similarly, all batch-related

otations are corresponding to j , such as Z j , f̄ k, j . All parameters ( τ ,

, η, β) of proposed algorithms are denoted by Greek letters. Ex-

ept for X t , Z j , other notations using capital letters denote summa-

ions, e.g., G A , R A , W j . 
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Table 1 

Main notations. 

Notation Meaning 

K = { 1 , 2 , . . . , k, . . . , K} set of all channels 

T = { 1 , 2 , . . . , t, . . . , T } set of all t imeslots 

J = { 1 , 2 , . . . , j, . . . , J} set of all batches 

M set of m alicious users 

S = { 1 , 2 , . . . , s, . . . , S} set of all s trategies 

C = { 1 , 2 , . . . , c, . . . , C} c overing strategy set 

C k number of strategies in C that contains channel k 

l number of radios in the monitor 

r unit channel r eward which satisfies rl ≤ 1 

c(X t−1 , X t ) switching c ost from strategy X t−1 to X t 
G A cumulative strategy rewards of Algorithm A 

L A cumulative switching costs of Algorithm A 

U A utility of Algorithm A 

R A weak r egret of Algorithm A 

τ parameter to determine the batch size 

γ parameter to calculate strategy probabilities 

η parameter to update weights 

β parameter to calculate channel scores 

X t chosen stratgegy in timeslot t 

Z j chosen stratgegy in batch j 

f k, t channel reward of channel k in timeslot t 

g s, t strategy reward of strategy s in timeslot t 

f̄ k, j average channel reward of channel k in batch j 

ḡ s, j average strategy reward of strategy s in batch j 

f̄ ′ 
k, j 

average channel score of channel k in batch j 

ḡ ′ 
s, j 

average strategy score of strategy s in batch j 

h k, j channel weight of channel k in batch j 

w s, j strategy weight of strategy s in batch j 

W j total weight of all strategies in batch j 

q k, j channel probability of channel k in batch j 

p s, j strategy probability of strategy s in batch j 
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Different algorithms use different equations to calculate the

strategy probabilities (Line 4) and update the strategy weights

(Line 7). With carefully chosen parameters, their theoretical per-

formances are shown in Table 2 . In summary, SpecWatch-I and

SpecWatch-II bound the expected weak regrets to O ( T 2/3 ); while

SpecWatch-III bounds the actual weak regret to O ( T 2/3 ) with user-

defined probability. 

Both algorithms are online algorithm which records the mon-

itoring history every timeslot and update the monitoring strat-

egy every batch (every τ timeslots). Considering each timeslot, the

time complexity of the calculation is O ( S ), where S is the num-

ber of all possible strategies. This is the common complexity for

all adversarial MAB-based algorithms. Even though S = 

(
K 
l 

)
is not

polynomial in K or l , the values of k and l are usually very small in

practice. For example, the maximum value of K is 45 according to

Google’s Spectrum Database [56] and the maximum number of ra-

dios on each monitor defined by the active IEEE 802.11af standard

is set to be 4 [52] . 

5. Spectrum monitoring algorithm with bounded expected 

weak regret 

In this section, we design one spectrum monitoring algo-

rithm, SpecWatch-II, whose expected weak regret is theoretically

bounded. 

5.1. SpecWatch-II 

5.1.1. Algorithm design 

Compared to SpecWatch-I, the input parameters of SpecWatch-

II are τ and η, where τ determines the batch size and η is used to

calculate strategy weights; the strategy probabilities in SpecWatch-

II are proportion to the strategy weights only, and the strategy

weights are updated smaller for the next timeslot. 
Calculating strategy probability p s, j . The probability of choos-

ng strategy s ∈ S is calculated using 

p s, j = 

w s, j 

w j 

, (8)

here w s, j is the strategy weight of strategy s in batch j , and

 j = 

∑ 

s ∈S w s, j . Recall that in SpecWatch-I, we use the weighted

verage of two terms, p s, j = (1 − γ ) 
w s, j 

w j 
+ 

γ
S , where the first is to

xploit strategies with good reward history, and the second guar-

ntees the exploration over all strategies. γ controls the balance

etween them. Now we only have one term, but the balance still

xists. This is because a strategy not chosen before is guaranteed

o have a higher weight, due to the way we update the strategy

eight as discussed below. 

Choosing strategy Z j and monitoring spectrum. We select a

trategy Z j ∈ S randomly according to the probabilities calculated

bove. The monitor keeps using Z j for all τ timeslots in batch j , i.e.,

 [ j]+ i = Z j for 1 ≤ i ≤ τ . Therefore, the monitor only incurs switch-

ng cost c(Z j−1 , Z j ) once for the whole batch j . 

Depending on the misuse behavior of MUs (discussed in

ection 3 ), the monitor receives rewards on monitored channels

ccordingly. The monitor keeps records of f k, [ j]+ i for all k ∈ Z j and

 ≤ i ≤ τ . The strategy reward gained by the monitor is the summa-

ion of rewards over all monitored channels. 

Updating strategy weight w s, j+1 . At the end of each batch, we

pdate strategy weights in the following steps. 

First, we calculate the average channel reward of each channel

 ∈ K in batch j , 

f̄ k, j = 

1 

τ

τ∑ 

i =1 

f k, [ j]+ i . (9)

y (2) , f̄ k, j ∈ [0 , r] . We also calculate the probability of choosing

hannel k ∈ Z j by summing up the probabilities of strategies con-

aining that channel, 

 k, j = 

∑ 

s : k ∈ s 
p s, j . (10)

here s : k ∈ s denotes any strategy s containing channel k . Based

n (9) and (10) , we calculate the average channel score , 

f̄ ′ k, j = 

1 /l − f̄ k, j 

q k, j 

1 k ∈ Z j , (11)

here 1 k ∈ Z j is an indicator function which has the value 1 if k ∈ Z j ;

 otherwise. This score is always nonnegative since f̄ k, j ≤ r ≤ 1 /l.

hen we update each channel weight by 

 k, j+1 = h k, j exp 

(
−η f̄ ′ k, j 

)
, (12)

here h k, 1 = 1 for all k ∈ K. Note that the channel weight is non-

ncreasing from batch to batch. 

Finally, we give the formal definition of strategy weight , which

s defined as 

 s, j 
def = 

∏ 

k ∈ s 
h k, j . (13)

ombining (12) and (13) , we can directly update the strategy

eight for each s ∈ S by 

 s, j+1 = w s, j exp (−ηḡ ′ s, j ) , (14)

here ḡ ′ 
s, j 

is the average strategy score for each s ∈ S, i.e., 

¯
 

′ 
s, j = 

∑ 

k ∈ s 
f̄ ′ k, j . (15)
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Table 2 

Algorithm comparison. 

Algorithm Core functions Theoretical bound of weak regret 

SpecWatch-I p s, j = (1 − γ ) 
w s, j 

w j 
+ 

γ
S 

E [ R I ] ≤ 3 ( (e − 1) S ln S ) 
1 
3 T 

2 
3 

w s, j+1 = w s, j exp 

(
γ
S 

∑ 

k ∈ s 
1 
τ

∑ τ
i =1 f k, [ j]+ i ∑ 

s : k ∈ s p s, j 

)
SpecWatch-II p s, j = 

w s, j 

w j 
E [ R II ] ≤ 3 

(
1 
2 

S ln S 
) 1 

3 T 
2 
3 

w s, j+1 = w s, j exp 

(
−η
∑ 

k ∈ s 
1 k ∈ Z j (1 /l− 1 

τ

∑ τ
i =1 f k, [ j]+ i ) ∑ 

s : k ∈ s p s, j 

)
SpecWatch-III p s, j = (1 − γ ) 

w s, j 

w j 
+ 

γ
C 
1 s ∈C IPr 

[
R III ≤ 2 

(
4 
√ 

lC ln S + 2 
√ 

lK ln K 
δ

) 2 
3 

T 
2 
3 

]

w s, j+1 = w s, j exp 

(
η
∑ 

k ∈ s 
1 
τ

∑ τ
i =1 f k, [ j]+ i + β

(1 −γ ) 

∑ 
s : k ∈ s w s, j 

w j 
+ γC k 

C 

)
≤ 1 − δ, where C ≤ K 

N  
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ote that by combining (9) , (10) and (11) , we can directly calculate

¯ ′ 
s, j 

directly by 

¯
 

′ 
s, j = 

∑ 

k ∈ s 

1 k ∈ Z j (1 /l − f̄ k, j ) 

q k, j 

= 

∑ 

k ∈ s 

1 k ∈ Z j (1 /l − 1 
τ

∑ τ
i =1 f k, [ j]+ i ) ∑ 

s : k ∈ s p s, j 

. (16) 

emark. We do not update strategy weights based on strategy re-

ards, but instead calculate channel weights (12) first. This is be-

ause the rewards of monitored channels provide useful informa-

ion on those unchosen strategies containing these channels. 

.1.2. Performance analysis 

To analyze the performance of SpecWatch-II, we first bound the

ifference between the reward gained by SpecWatch-II and that

y the best fixed algorithm ( Lemma 1 ), and then prove the up-

er bound of the expected weak regret ( Theorem 1 ). For a better

nderstanding of Theorem 1 , we present a specific bound obtained

y a particular choice of parameters η and τ ( Corollary 1 ). 

Recalling (5), (6) and (7) , the weak regret of SpecWatch-II is 

 II = (G best − L best ) − (G II − L II ) . (17)

Since the best fixed algorithm never switches the strategies,

nd SpecWatch-II only switches between batches for at most J

imes, their cumulative switching costs are 

 best = c 0 ∈ [0 , 1] and L II = 

J ∑ 

j=1 

c(Z j−1 , Z j ) ≤ J. 

hus, we have 

 II − L best ≤ J. (18) 

Now it suffices to only consider the difference between rewards.

An important observation is that we group the timeslots into

atches, calculate the strategy probabilities only at the beginning

f each batch, and use the average value of entire batch to update

eight. Therefore, each batch can be considered as a round in con-

entional MAB. With this consideration, we introduce the notations

elow for our proofs, 

¯
 s, j = 1 s = Z j 

∑ 

k ∈ s 
f̄ k, j , Ḡ II 

def = 

J ∑ 

j=1 

ḡ Z j , j and Ḡ best 
def = max 

s ∈S 

J ∑ 

j=1 

ḡ s, j . (19) 

Note that 

¯
 s, j = 

1 

τ
1 s = Z j 

∑ 

k ∈ s 
f k, j = 

1 

τ
1 s = Z j 

∑ 

k ∈ s 

τ∑ 

i =1 

f k, [ j]+ i 

= 

1 

τ
1 s = Z j 

τ∑ 

i =1 

∑ 

k ∈ s 
f k, [ j]+ i = 

1 

τ

τ∑ 

i =1 

g s, [ j]+ i . (20) 

Thus we have 

 II = 

T ∑ 

t=1 

g X t ,t = τ
J ∑ 

j=1 

ḡ Z j , j = τ Ḡ II . (21)
imilarly, 

 best = τ Ḡ best . (22) 

We now provide the bound of the expected difference between

¯ II and ḡ best . 

emma 1. For any type of adversaries, any T > 0, and any η > 0, we

ave 

 

[
Ḡ best − Ḡ II 

]
≤ ηJS 

2 

+ 

ln S 

η
, (23) 

here ln is the natural logarithm function. 

roof. The proof of this lemma is based on [48, Theorem 3.1] with

ecessary modifications and extensions. 

First we analyze 
W j+1 

W j 
. For any sequences Z 1 , . . . , Z j generated

y SpecWatch-II, we have 

W j+1 

W j 

= 

∑ 

s ∈S 

w s, j+1 

W j 

= 

∑ 

s ∈S 

w s, j 

W j 

exp 

(
−ηḡ ′ s, j 

)
= 

∑ 

s ∈S 
p s, j exp 

(
−ηḡ ′ s, j 

)
(24) 

∑ 

s ∈S 
p s, j 

(
1 − ηḡ ′ s, j + 

1 

2 

(
ηḡ ′ s, j 

)2 
)

(25) 

1 − η
∑ 

s ∈S 

(
p s, j ̄g 

′ 
s, j 

)
+ 

η2 

2 

∑ 

s ∈S 
p s, j 

(
ḡ ′ s, j 

)2 
, (26) 

here (24) uses the definition of p s, j , and (25) holds by the fact

hat for x ≥ 0, e −x ≤ 1 − x + 

1 
2 x 

2 . 

Next, we bound (26) by bounding 
∑ 

s ∈S p s, j ̄g 
′ 
s, j 

and

 

s ∈S p s, j 

(
ḡ ′ 

s, j 

)2 

. 

 

s ∈S 
p s, j ̄g 

′ 
s, j = 

∑ 

s ∈S 

( 

p s, j 

∑ 

k ∈ s 
f̄ ′ k, j 

) 

= 

∑ 

k ∈K 

( 

f̄ ′ k, j 

∑ 

s : k ∈ s 
p s, j 

) 

= 

∑ 

k ∈K 

(
f̄ ′ k, j q k, j 

)
= 

∑ 

k ∈ Z j 

(
1 /l − f̄ k, j 

)
≥ 1 − ḡ Z j , j , (27) 
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a

E

 

E  

E

∑ 

s ∈S 
p s, j 

(
ḡ ′ s, j 

)2 = 

∑ 

s ∈S 

⎛ 

⎝ p s, j 

( ∑ 

k ∈ s 
f̄ ′ k, j 

) 2 
⎞ 

⎠ 

≤
∑ 

s ∈S 

( 

p s, j · l ·
∑ 

k ∈ s 

(
f̄ ′ k, j 

)2 

) 

= l ·
∑ 

k ∈K 

( (
f̄ ′ k, j 

)2 ∑ 

s : k ∈ s 
p s, j 

) 

= l ·
∑ 

k ∈K 

((
f̄ ′ k, j 

)2 
q k, j 

)

= l ·
∑ 

k ∈K 

( 

f̄ ′ k, j ·
(
1 /l − f̄ k, j 

)
q k, j 

· q k, j 

) 

≤ l ·
∑ 

k ∈K 

(
f̄ ′ k, j ·

1 

l 

)
= 

∑ 

k ∈K 
f̄ ′ k, j 

= 

∑ 

k ∈ Z j 
f̄ ′ k, j + 

∑ 

k ∈K\ Z j 
f̄ ′ k, j 

= ḡ ′ Z j , j , (28)

where (28) holds as a special case of the Cauchy–Schwarz inequal-

ity, 

Thus, we have ∑ 

s ∈S 
p s, j ̄g 

′ 
s, j ≥ 1 − ḡ Z j , j and 

∑ 

s ∈S 
p s, j 

(
ḡ ′ s, j 

)2 ≤ ḡ ′ Z j , j . (29)

Combining (26) and (29) , we have 

W j+1 

W j 

≤ 1 − η(1 − ḡ Z j , j ) + 

η2 

2 

ḡ ′ Z j , j . (30)

Taking the log of both sides and using 1 + x ≤ e x gives 

ln 

W j+1 

W j 

≤ −η(1 − ḡ Z j , j ) + 

η2 

2 

ḡ ′ Z j , j . (31)

Summing over j , we then get 

ln 

W J+1 

W 1 

≤ −η(J − Ḡ II ) + 

η2 

2 

J ∑ 

j=1 

ḡ ′ Z j , j . (32)

Now we consider the lower bound of ln 

W J+1 

W 1 
. 

For any strategy s , 

ln 

W J+1 

W 1 

≥ ln 

w s, j+1 

W 1 

= ln 

w s, 1 exp 

(
−η
∑ J 

j=1 
ḡ ′ 

s, j 

)
Sw s, 1 

= −η
J ∑ 

j=1 

ḡ ′ s, j − ln S. 

Since the above inequality holds for any strategy s , we get 

ln 

W J+1 

W 1 

≥ −η min 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j − ln S. (33)

Combining (32) and (33) , we have 

−η(J − Ḡ II ) + 

η2 

2 

J ∑ 

j=1 

ḡ ′ Z j , j ≥ −η min 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j − ln S. 
ividing both sides by −η and moving terms, we have 

(J − Ḡ II ) − min 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j ≤
η

2 

J ∑ 

j=1 

ḡ ′ Z j , j + 

ln S 

η
. (34)

Next, we take expectations of both sides in (34) with respect to

he distribution of Z 1 , Z 2 , . . . , Z j . 

For the conditional expected value of each ḡ ′ 
s, j 

, since the ex-

ected value of a discrete random variable is the probability-

eighted average of all possible values, we have 

E 

[
ḡ ′ s, j | Z 1 , Z 2 , . . . , Z j−1 

]
 p s, j · E 

[
ḡ ′ s, j | s = Z j 

]
+ (1 − p s, j ) · E 

[
ḡ ′ s, j | s � = Z j 

]
. (35)

Note that 

 

[
ḡ ′ s, j | s � = Z j 

]
= 

∑ 

k ∈ s 

1 k ∈ Z j (1 /l − f̄ k, j ) 

q k, j 

= 

∑ 

k ∈ s ∧ k ∈ Z j 

1 k ∈ Z j (1 /l − f̄ k, j ) 

q k, j 

≤
∑ 

k ∈ Z j 

1 k ∈ Z j (1 /l − f̄ k, j ) 

q k, j 

= E 

[
ḡ ′ s, j | s = Z j 

]
, (36)

here (36) is based on (16) . 

Therefore, from (35) we have 

 

[
ḡ ′ s, j 

]
≤ E 

[
ḡ ′ s, j | s = Z j 

]
= E 

[ ∑ 

k ∈ s 

1 k ∈ Z j (1 /l − f̄ k, j ) 

q k, j 

| s = Z j 

] 

= 

∑ 

k ∈ Z j 
(1 /l − f̄ k, j ) (37)

 1 − ḡ Z j , j 

≤ 1 − ḡ s ′ , j , for any s ′ ∈ S, (38)

here (37) is based on 1 k ∈ Z j = 1 , q k, j = 1 given k ∈ s ∧ s = Z j , and

38) is based on the definition of strategy reward (1) and the def-

nition of the average strategy reward (20) . More clearly, ḡ s ′ , j =
1 
τ

∑ τ
i =1 g s ′ , [ j]+ i = 

1 
τ

∑ τ
i =1 0 = 0 if s ′ � = Z j for any s ′ ∈ S . The nota-

ion s ′ stands for an arbitrary monitoring strategy, this strategy can

e or not be the same as s . 

Then we get 

 

[ 

min 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j 

] 

≤ J − max 
s ∈S 

J ∑ 

j=1 

ḡ s, j = J − Ḡ best (39)

nd 

 

[ 

(J − Ḡ II ) − min 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j 

] 

≥ E 

[
(J − Ḡ II ) − (J − Ḡ best ) 

]
= E 

[
Ḡ best − Ḡ II 

]
. (40)

Moreover, from (38) we also know that 

 

[ 
ḡ ′ Z j , j 

] 
≤ 1 − ḡ Z j , j ≤ 1 . (41)

Therefore, combing (34), (40) , and (41) , we have 

 

[
Ḡ best − Ḡ II 

]
≤ η

2 

JS + 

ln S 

η
. 
�



M. Li et al. / Computer Networks 143 (2018) 176–190 183 

 

(

T  

o  

A

E

P

E

 

b

C  

r  

S

E

P  

r

R  

O  

p  

i  

o  

t  

v  

∞

6

 

s  

c  

e  

a  

e  

s  

a  

c

 

s  

O  

i

6

6

 

t  

t  

c

 

p  

s  

c  

s  

s  

t  

b

 

w  

0  

l  

p  

s

 

t

 

n  

w  

w  

t  

i

 

d  

A  

t  

c  

m  

t  

t  

i

h

w  

d

w  

w  

c

g

6

 

b  

M

s

F

w  
Now taking into consideration the bound of switching costs,

18) , we have the following theorem: 

heorem 1. For any type of adversaries, the expected weak regret

f SpecWatch-II is O (T 
2 
3 ) with parameters η = A ηT −

1 
3 > 0 and τ =

 τ T 
1 
3 ∈ [ 1 , T ] , where A γ and A τ are constants. Specifically, 

 [ R II ] ≤
(

A ηS 

2 

+ 

A τ ln S 

A η
+ 

1 

A τ

)
T 

2 
3 . (42) 

roof. 

 [ R II ] = E [ G best − L best − G II + L II ] 

≤ E [ G best − G II ] + J 

= E 

[
τ Ḡ best − τ Ḡ II 

]
+ J 

= 

ηJSτ

2 

+ 

τ ln S 

η
+ J 

= 

ηST 

2 

+ 

τ ln S 

η
+ T /τ

= 

(
A ηS 

2 

+ 

A τ ln S 

A η
+ 

1 

A τ

)
T 

2 
3 . 

�

For better understanding of Theorem 1 , we now give a specific

ound by choosing particular parameters. 

orollary 1. For any type of adversaries, when T ≥ 1 
2 S ln S, with pa-

ameters η = 

3 

√ 

4 ln S 
S 2 T 

and τ = 

3 

√ 

2 T 
S ln S 

, the expected weak regret of

pecWatch-II is 

 [ R II ] ≤ 3 

(
1 

2 

S ln S 

) 1 
3 

T 
2 
3 . (43) 

roof. Substituting the parameters in (42) , we have the immediate

esult. �

emark. The expected weak regret of SpecWatch-II is bounded by

 ( T 2/3 ). This upper bound matches the lower bound of the MAB-SC

roblem proved in [26] which is used to model the spectrum mon-

toring problem in this paper. Thus, SpecWatch-II is asymptotically

ptimal. If we calculate the normalized weak regret 
R II 
T , i.e., amor-

izing the regret to every timeslot, then it is clear that the expected

alue of normalized weak regret converges to 0 as T approaches to

 . 

. Spectrum monitoring algorithm with bounded weak regret 

We have already proved that SpecWatch-II is an effective online

pectrum monitoring algorithms with expected normalized regret

onverging to 0. Though the expectation provides a quite legitimate

stimate on the performance of SpecWatch-I and SpecWatch-II, the

ctual value of weak regret may sometimes deviate a lot from the

xpected bound as expectation just represents the mean. In this

ection, we propose the improved algorithm, SpecWatch-III, whose

ctual weak regrets are bounded by O ( T 2/3 ) with any user-defined

onfidence level. 

Moreover, by introducing a new concept, covering strategy

et , we reduce the coefficient of the weak regret’s bound from

 ( 
3 
√ 

S ln S ) to O ( 
3 
√ 

C ln S ) , where C ≤ K . When S  K , this algorithm

s highly recommended than SpecWatch-II. 

.1. SpecWatch-III 

.1.1. Algorithm design 

SpecWatch-III is designed similar to SpecWatch-II. However, it

akes four parameters τ , γ , β and η as input, where γ is used
o calculate strategy probabilities, β is used to calculate average

hannel scores, and η is used to update strategy weights. 

Calculating strategy probability p s, j . For calculating strategy

robabilities, we introduce a new concept called covering strategy

et . A covering strategy set C ⊂ S is a set of strategy that cover s all

hannels K, where a channel k ∈ K is covered by C if there is a

trategy s ∈ C such that k ∈ s . In SpecWatch-III, we randomly con-

truct a minimal covering strategy set whose size C 
def = |C| is less

han or equal to K . The probability of each strategy s is calculated

y 

p s, j = (1 − γ ) 
w s, j 

w j 

+ 

γ

C 
1 s ∈C , (44)

here 1 s ∈C is an indicator function which has the value 1 if s ∈ C;

 otherwise. In this way, the strategies in the covering set are more

ikely to be chosen than others. As a result, SpecWatch-III can ex-

lore all channels more quickly, and thus reveal the best channels

ooner, which expedites the exploration for the best strategy. 

Choosing strategy Z j and monitoring spectrum. This part is

he same as SpecWatch-II. 

Updating strategy weight w s, j+1 . For calculating average chan-

el scores, we introduce a new parameter β and have f̄ ′ 
k, j 

= 

f̄ k, j + β
q k, j 

,

here q k, j is the channel probability of k ∈ K in batch j . By (44) ,

e have is q k, j = 

∑ 

s : k ∈ s p s, j = (1 − γ ) 
∑ 

s : k ∈ s w s, j 

w j 
+ 

γC k 
C , where C k is

he number of strategies in the covering strategy set and contain-

ng channel k, i.e., C k = |{ s | s ∈ C ∧ k ∈ s }| . 
The average channel score use q k, j as the denominator in or-

er to compensate the rewards of channels with low probabilities.

mong the channels receiving rewards, those with lower probabili-

ies can obtain higher average channel scores, and therefore higher

hannel weights. Note that we could also gain rewards on an un-

onitored channel if we had monitored it, which indicates that

he average channel score of that channel should be positive. With

his concern, we use parameter β to reduce the bias between mon-

tored and unmonitored channels. 

Then the channel weight of k is 

 k, j+1 = h k, j exp 

(
η f̄ ′ k, j−1 

)
, (45) 

here h k, 1 = 1 for all k ∈ K. Thus, the strategy weight of s is up-

ated by 

 s, j+1 = w s, j exp (ηḡ ′ s, j ) , (46)

here ḡ ′ 
s, j 

is the average strategy score of s in batch j and can be

alculated directly by 

¯
 

′ 
s, j = 

∑ 

k ∈ s 

1 
τ

∑ τ
i =1 f k, [ j]+ i + β

(1 − γ ) 
∑ 

s : k ∈ s w s, j 

w j 
+ 

γC k 
C 

. (47) 

.1.2. Performance analysis 

Since SpecWatch-III only update the monitoring strategy across

atches, each batch can be regarded as a round in conventional

AB. We define ḡ III 
def = 

∑ J 
j=1 

ḡ Z j , j , where Z j is SpecWatch-III’s cho- 

en strategy for each batch. Then we have the following lemma. 

We first introduce the following two notations, 

 ̄k,n 
def = 

n ∑ 

j=1 

f̄ k, j and F̄ ′ k,n 

def = 

n ∑ 

j=1 

f̄ ′ k, j for k ∈ K, (48) 

here n is an arbitrary batch, f̄ k, j = 

1 
τ

∑ τ
i =1 f k, [ j]+ i and f̄ ′ 

k, j 
=

f̄ k, j + β
q k, j 

. 

We then prove the following lemma. 
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Lemma 2. For any type of adversaries, for any δ ∈ (0, 1), β ∈ (0, 1)

and k ∈ K in SpecWatch-III, we have 

IPr [ F k,n ≥ F 
′ 
k,n + 

1 

β
ln 

K 

δ
] ≤ δ

K 

. (49)

Proof. We prove (49) based on [57, Lemma 2] . Note that f̄ ′ 
k, j 

for

different batches are generated independently and F̄ k,n is the sum

of these independent random variables. By the Chernoff bound, we

have 

IPr 
[
F̄ k,n ≥ F̄ ′ k,n + u 

]
≤ exp (−u v ) E 

[
exp 

(
v 
(
F̄ k,n − F̄ ′ k,n 

))]
, 

for any k ∈ K, any u > 0, and any v > 0. Let u = 

1 
β

ln 

K 
δ

and v = β,

then we have 

exp (−u v ) E 

[
exp 

(
v 
(
F̄ k,n − F̄ ′ k,n 

))]
= exp (− ln 

K 

δ
) E 

[
exp 

(
β
(
F̄ k,n − F̄ ′ k,n 

))]
= 

δ

K 

E 

[
exp 

(
β
(
F̄ k,n − F̄ ′ k,n 

))]
. 

Thus, to prove (49) , it suffices to prove that for all n , 

E 

[
exp 

(
β
(
F̄ k,n − F̄ ′ k,n 

))]
≤ 1 . 

Define 

D n 
def = exp 

(
β
(
F̄ k,n − F̄ ′ k,n 

))
. 

We first show that E n [ D n ] ≤ D n −1 for n ≥ 2, where E n denotes the

conditional expectation E [ ·| Z 1 , Z 2 , . . . , Z n −1 ] . Note that 

D n = D n −1 exp 

(
β
(

f̄ k,n − f̄ ′ k,n 

))
. 

Taking conditional expectations, we obtain 

E n [ D n ] 

= D n −1 E n 

[
exp 

(
β
(

f̄ k,n − f̄ ′ k,n 

))]
= D n −1 E n 

[
exp 

(
β

(
f̄ k,n −

1 k ∈ Z n f̄ k,n + β

q k,n 

))]

= D n −1 exp 

(
− β2 

q k,n 

)

· E n 

[
exp 

(
β

(
f̄ k,n −

1 k ∈ Z n f̄ k,n 

q k,n 

))]

≤ D n −1 exp 

(
− β2 

q k,n 

)
E n 

[
1 + β

(
f̄ k,n −

1 k ∈ Z n f̄ k,n 

q k,n 

)

+ β2 

(
f̄ k,n −

1 k ∈ Z n f̄ k,n 

q k,n 

)2 
] 

(50)

= D n −1 exp 

(
− β2 

q k,n 

)
E n 

[ 

1 + β2 

(
f̄ k,n −

1 k ∈ Z n f̄ k,n 

q k,n 

)2 
] 

(51)

≤ D n −1 exp 

(
− β2 

q k,n 

)
E n 

[ 

1 + β2 

(
1 k ∈ Z n f̄ k,n 

q k,n 

)2 
] 

≤ D n −1 exp 

(
− β2 

q k,n 

)(
1 + 

β2 

q k,n 

)
≤ D n −1 , (52)

where 1 k ∈ Z n = 1 if k ∈ Z n and 0 otherwise; (50) holds because β < 1,

f̄ k,n −
1 k ∈ Z n f̄ k,n 

q k,n 
≤ 1 and e x ≤ 1 + x + x 2 for x ≤ 1; (51) follows from
 t 

[
1 k ∈ Z n f̄ k,n 

q k,n 

]
= f̄ k,n ; (52) holds by the inequality 1 + x ≤ e x . Taking

xpectations on both sides proves 

 [ D n ] ≤ E [ D n −1 ] . 

 similar approach shows that E [ D 1 ] ≤ 1, which implies E [ D n ] =
 

[
exp 

(
β
(
F̄ k,n − F̄ ′ 

k,n 

))]
≤ 1 as desired. �

emma 3. For any type of adversaries, any T > 0, γ ∈ (0, 1/2), τ ∈ [1,

 ], β ∈ (0, 1), and η > 0 satisfying 2 ηlC ≤γ , we have 

¯
 best − Ḡ III ≤ γ J + 2 ηlCJ + 

l 

β
ln 

K 

δ
+ 

ln S 

η
+ βKJ. 

ith probability at least 1 − δ for any δ ∈ (0, 1) . 

roof. First, we show 0 ≤ ηḡ s, j ≤ 1 . It is easy to notice that ηḡ ′ 
s, j 

≥
 . In addition, we have 

ḡ ′ s, j = η
∑ 

k ∈ s 
f̄ ′ k, j ≤ η

∑ 

k ∈ s 

f̄ k, j + β

q̄ s, j 

≤ η
∑ 

k ∈ s 

1 + β
γ
C 

≤ (1 + β) ηlC 

γ
≤ 1 , 

here the second inequality is due to q k, j ≥ γ
C for all k ∈ K, and

he last inequality is due to 2 ηlC ≤γ . 

Then we analyze 
W j+1 

W j 
. For any sequence Z 1 , . . . , Z j generated by

pecWatch-III, we have 

W j+1 

W j 

= 

∑ 

s ∈S 

w s, j+1 

W j 

= 

∑ 

s ∈S 

w s, j 

W j 

exp 

(
ηḡ ′ s, j 

)
= 

∑ 

s ∈S 

p s, j − γ
C 
1 s ∈C 

1 − γ
exp 

(
ηḡ ′ s, j 

)
(53)

∑ 

s ∈S 

p s, j − γ
C 
1 s ∈C 

1 − γ

(
1 + ηḡ ′ s, j + η2 

(
ḡ ′ s, j 

)2 
)

(54)

1 − γ

1 − γ
+ 

∑ 

s ∈S 

p s, j 

1 − γ

(
ηḡ ′ s, j + η2 

(
ḡ ′ s, j 

)2 
)

1 + 

η

1 − γ

∑ 

s ∈S 
p s, j ̄g 

′ 
s, j + 

η2 

1 − γ

∑ 

s ∈S 
p s, j 

(
ḡ ′ s, j 

)2 
, (55)

here (53) uses the definition of p s, j in (44) , and (54) holds by the

act that e x ≤ 1 + x + x 2 for 0 ≤ x ≤ 1. 

Next we bound (55) . For the second term, we have 

 

s ∈S 
p s, j ̄g 

′ 
s, j = 

∑ 

s ∈S 

( 

p s, j 

∑ 

k ∈ s 
f̄ ′ k, j 

) 

= 

∑ 

k ∈K 

( 

f̄ ′ k, j 

∑ 

s : k ∈ s 
p s, j 

) 

= 

∑ 

k ∈K 

(
f̄ ′ k, j q k, j 

)
= 

∑ 

k ∈K 

(
f̄ k, j + β

)
= 

∑ 

k ∈ Z j 

(
f̄ k, j + β

)
+ 

∑ 

k ∈K\ Z j 

(
f̄ k, j + β

)
= ḡ Z j , j + Kβ, (56)

here (56) uses the definition of average strategy reward and the

act that f̄ k, j is 0 when k �∈ Z j . 
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For the second sum, 

 

s ∈S 
p s, j 

(
ḡ ′ s, j 

)2 = 

∑ 

s ∈S 

⎛ 

⎝ p s, j 

( ∑ 

k ∈ s 
f̄ ′ k, j 

) 2 
⎞ 

⎠ 

≤
∑ 

s ∈S 

( 

p s, j · l ·
∑ 

k ∈ s 

(
f̄ ′ k, j 

)2 

) 

(57) 

= l ·
∑ 

k ∈K 

( (
f̄ ′ k, j 

)2 ∑ 

s : k ∈ s 
p s, j 

) 

= l ·
∑ 

k ∈K 

((
f̄ ′ k, j 

)2 
q k, j 

)

= l ·
∑ 

k ∈K 

( 

f̄ ′ k, j ·
1 k ∈ Z j f̄ k, j + β

q k, j 

· q k, j 

) 

≤ l · (1 + β) ·
∑ 

k ∈K 
f̄ ′ k, j 

≤ l · (1 + β) ·
∑ 

s ∈C 
ḡ ′ s, j , (58) 

here (57) holds as a special case of the Cauchy–Schwarz In-

quality 
(∑ n 

i =1 a i · 1 
)2 ≤ (∑ n 

i =1 a 
2 
i 

)(∑ n 
i =1 1 

2 
)
, and (58) holds be-

ause covering strategy set C covers each channel at least once. 

Therefore, combining (55) , (56) , and (58) , we have 

W j+1 

W j 

≤ 1 + 

η

1 − γ

(
ḡ Z j , j + Kβ

)
+ 

η2 l(1 + β) 

1 − γ

∑ 

s ∈C 
ḡ ′ s, j . 

Taking the log of both sides and using 1 + x ≤ e x gives 

n 

W j+1 

W j 

≤ η

1 − γ

(
ḡ Z j , j + Kβ

)
+ 

η2 l(1 + β) 

1 − γ

∑ 

s ∈C 
ḡ ′ s, j . 

Summing over j we then get 

n 

W J+1 

W 1 

≤ η

1 − γ

(
Ḡ III + JKβ

)
+ 

η2 l(1 + β) 

1 − γ

J ∑ 

j=1 

∑ 

s ∈C 
ḡ ′ s, j . 

Note that 

J 
 

j=1 

∑ 

s ∈C 
ḡ ′ s, j ≤ C max 

s ∈S 

J ∑ 

j=1 

ḡ ′ s, j ≤ C max 
s ∈S 

Ḡ 

′ 
s,J . 

We have 

n 

W J+1 

W 1 

≤ η

1 − γ

(
Ḡ III + JKβ

)
+ 

η2 l(1 + β) C 

1 − γ
max 

s ∈S 
Ḡ 

′ 
s,J . (59) 

Now we consider the lower bound of ln 

W J+1 

W 1 
. 

For any strategy s , 

n 

W J+1 

W 1 

≥ ln 

w s, j+1 

W 1 

= ln 

w s, 1 exp 

(
η
∑ J 

j=1 
ḡ ′ 

s, j 

)
Sw s, 1 

= η
J ∑ 

j=1 

ḡ ′ s, j − ln S 

= ηḠ 

′ 
s,J − ln S. 

Since the above inequality holds for any strategy s , we get 

n 

W J+1 

W 

≥ η max 
s ∈S 

Ḡ 

′ 
s,J − ln S. (60) 
1 s
Combining (59) and (60) , we have 

¯
 III ≥ (1 − γ − ηl(1 + β) C) max 

s ∈S 
Ḡ 

′ 
s,J −

1 − γ

η
ln S − JKβ. (61)

Note that 

¯
 

′ 
s,J = 

J ∑ 

j=1 

ḡ ′ s, j = 

J ∑ 

j=1 

∑ 

k ∈ s 
f̄ ′ k, j = 

∑ 

k ∈ s 
F̄ ′ k,n , 

nd that 

¯
 s,J = 

J ∑ 

j=1 

ḡ s, j = 

J ∑ 

j=1 

∑ 

k ∈ s 
f̄ k, j = 

∑ 

k ∈ s 
F̄ k,n . 

By using Lemma (49) and applying Boole’s inequality, we obtain

hat, with probability at least 1 − δ, 

¯
 III ≥ (1 − γ − ηl(1 + β) C) 

(
max 

s ∈S 
Ḡ s,J − l 

β
ln 

K 

δ

)

− 1 − γ

η
ln S − JKβ

≥ (1 − γ − ηl(1 + β) C) 

(
Ḡ best −

l 

β
ln 

K 

δ

)

−1 − γ

η
ln S − JKβ, 

here 1 − γ − ηl(1 + β) C > 0 because ηl(1 + β) C ≤ 2 ηlC ≤ γ <

 / 2 . 

Therefore, 

¯
 best − Ḡ III ≤ (γ + ηl(1 + β) C) ̄G best 

+ ( 1 − γ − ηl(1 + β) C ) 
l 

β
ln 

K 

δ
+ 

1 − γ

η
ln S + JKβ

≤ γ J + 2 ηlCJ + 

l 

β
ln 

K 

δ
+ 

ln S 

η
+ βKJ, 

here the last inequity is due to the fact that Ḡ best ≤ J. �

Next, we bound the difference between the cumulative strategy

eward of the best fixed algorithm and that of SpecWatch-III. 

heorem 2. For any type of adversaries, with probability at least 1 −
, the weak regret of SpecWatch-III is bounded by O (T 

2 
3 ) . In partic-

lar, choosing τ = B τ T 
1 
3 ∈ [ 1 , T ] ,γ = B γ T −

1 
3 ∈ (0 , 1 2 ) ,β = B βT −

1 
3 ∈

(0 , 1) , and η = 

B γ
2 lC 

T −
1 
3 , where B τ , B γ , and B β are constants, 

we have 

 III ≤
(

2 B γ + B βK + B τ

(
l ln 

K 
δ

B β
+ 

ln S 

B η

)
+ 

1 

B τ

)
T 

2 
3 . (62) 

roof. Similar to the proof of Theorem 1 , we have 

 II = G best − L best − G II + L II 

≤ G best − G II + J 

= τ Ḡ best − τ Ḡ II + 

T 

τ

≤ τ

(
γ J + 2 ηlCJ + 

l 

β
ln 

K 

δ
+ 

ln S 

η
+ βKJ 

)
+ 

T 

τ
, 

≤ ( γ + 2 ηlC + βK ) T + τ

(
l 

β
ln 

K 

δ
+ 

ln S 

η

)
+ 

T 

τ
, (63) 

ith probability at least 1 − δ. The last inequality follows from

emma 3 . Plugging in the value of parameters finishes the

roof. �

We now provide an example choice of parameters to reach a

pecific bound. 
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Fig. 3. Convergence of weak regrets. 

Fig. 4. Algorithm comparison. 
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Corollary 2. For any type of adversaries, under the condition of 

T ≥ max 

{ 

B 

2 , 
8 ( lC ln S ) 

3 / 2 

B 

, 

(
l 
K 

ln 

K 
δ

)3 / 2 

B 

} 

, 

using parameters τ = B −
2 
3 T 

1 
3 ,γ = 

√ 

lC ln S · B −
1 
3 T −

1 
3 ,β = 

√ 

l 
K ln 

K 
δ

·

B −
1 
3 T −

1 
3 , and η = 

√ 

ln S 
4 lC 

· B −
1 
3 T −

1 
3 , where B = 4 

√ 

lC ln S + 2 

√ 

lK ln 

K 
δ
,

we have 

R III ≤ 2 

( 

4 

√ 

lC ln S + 2 

√ 

lK ln 

K 

δ

) 

2 
3 

T 
2 
3 , (64)

with probability at least 1 − δ. 

Proof. Substituting the parameters in (62) , we have the immediate

result. �

Remark. Note that it is not guaranteed that SpecWatch-III always

outperforms SpecWatch-II. The improvement over SpecWatch-II is

the fact that SpecWatch-III guarantees the actual weak regret to

be bounded with any predefined confidence level. Moreover, when

choosing parameters as those in Corollaries 1 and 2 , SpecWatch-III

has a much better bound than SpecWatch-II since the term SlnS is

removed. Recall that 

IE [ R II ] ≤ 3 ( 
1 

2 

S ln S) 

1 
3 

T 
2 
3 

while 

IPr 

⎡ 

⎣ R III ≤ 2 

( 

4 

√ 

lC ln S + 2 

√ 

lK ln 

K 

δ

) 

2 
3 

T 
2 
3 

⎤ 

⎦ ≤ 1 − δ. 

This could be a huge improvement when S  K because S is expo-

nential to K while C is no larger than K . 

7. Performance evaluation 

We conduct extensive simulations to demonstrate the perfor-

mance of our proposed online spectrum monitoring algorithms,

SpecWatch-I, SpecWatch-II, and SpecWatch-III. We first show the

convergence of normalized weak regrets of all three algorithms

and then study and compare their performances under different

adversary settings. We also discuss how algorithm parameters im-

pact the performance of proposed algorithms. Last but not least,

we demonstrate the impact of the detection probability, the num-

ber of radios, the number of MUs, and adversary settings, on the

algorithm performance. 

In the simulation setting, we consider K = 10 channels, and we

deploy a monitor with l = 2 radios. We set the unit reward of suc-

cessfully detecting on a single channel to be r = 0 . 3 and the unit

switching cost of tuning one radio to be c = 0 . 03 . If not specified,

the detection probability of each radio is set to be p d = 0 . 9 as it is

the recommended detection accuracy in consistent with [58] . The

parameters of all algorithms are chosen as in the corollaries. If the

monitor uses SpecWatch-III, we set δ = 0 . 5 so that the weak regret

is relatively small with an acceptable confidence level. 

We assume there are m = 2 MUs attacking channels either

obliviously or adaptively. Specifically, we consider four adversary

settings, 

• Fixed adversary ( Fixed ): Each MU selects a fixed channel and

never switches throughout the time horizon T . 

• Uniform adversary ( Uniform ): In every timeslot, each MU selects

a channel uniformly at random. 

• Normal adversary ( Normal ): In every timeslot, each MU selects

a channel following the same normal distribution. 
• Adaptive adversary ( Adaptive ): Each MU adopts modified

SpecWatch-I, where the actual channel reward is r if the MU

is not captured on that channel, and 0 otherwise. 

The simulation results are shown below, and each of them is

veraged over 100 trials. 

Weak regret. Fig. 3 shows the normalized weak regrets of all

lgorithms decrease with time horizon T , which supports our the-

retical analysis that the normalized weak regret converges to 0

s T → ∞ . In all following simulations, we fix the time horizon to

e T = 50 , 0 0 0 . Here we only show the result with adaptive adver-

ary since in other adversary settings, the results are similar. Note

hat SpecWatch-II outperforms other algorithms as shown in the

gure, but it only means that SpecWatch-II’s way to trade-off be-

ween exploration and exploitation is more appropriate under our

urrent simulation setting. 

Fig. 4 plots how the normalized weak regret decreases with

imeslots under adaptive adversary. At the beginning, there is ap-

arent fluctuation of the normalized weak regret. As time goes by,

he monitor and the adaptive adversary enter a relatively stable

tage, but we can still see the decreasing trend of the normal-

zed weak regret, which indicates our algorithms are learning from

onitoring history to make smart decisions. 

Impact of algorithm parameters. Among all parameters of the

hree algorithms, the most important one is the batch size τ ,

hich controls the trade-off between cumulative reward and cu-

ulative switching cost. As shown in Fig. 5 , we conducted simula-

ions where the batch size τ was set to be exactly T 1/ � and plot-

ed how the cumulative utility changes with �, under the adaptive

dversary. It is shown that all algorithms achieve highest cumula-

ive utility ratio when τ is around T 1/3 , which is in consistency

ith our theoretical analysis. The performances of all algorithms

re almost the same because they are designed based on the same
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Fig. 5. Impact of batch size on cumulative utility. 

Fig. 6. Impact of parameter γ on cumulative utility. 

Fig. 7. Impact of parameter β on cumulative utility. 
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Fig. 8. Cumulative utility under different adversary settings. 

Fig. 9. Impact of detection probability on cumulative reward and switching cost. 
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ramework and using same way to trade-off between rewards and

witching costs. 

Fig 6 shows unstable cumulative utilities when changing the

arameter γ . This implies that there is no universally applicable

hoice of γ which could balance the exploration and exploitation

n the best way. Note that our theorem requires η = 

γ
2 lC 

, so we do

ot show how η influences the algorithm performance separately.

n addition, it is shown that SpecWatch-III does not achieve better

tilities than SpecWatch-II. This is possible because the parameters

re not chosen as in the corollaries, and the corollaries only bound

he weak regret, but not the cumulative utility. 

Fig 7 shows how β , the parameter exclusively used in

pecWatch-III, affects the cumulative utilities and weak regrets. Re-

all that β is used to make up for the channels not monitored. For

ll unmonitored channels, we assume their channel rewards are β
nstead of 0. As shown in the figure, this value is the smaller the
etter for most of the cases. However, if it is very close to 0, such

enefits will diminish. 

Cumulative utility. Fig. 8 plots the actual utilities gained by

pecWatch-III. The figures for the other two algorithms are very

imilar and thus omitted. We observe that the cumulative utilities

nder fixed adversary greatly exceed the other three settings, and

he other three settings have similar results. 

Impact of system parameters and adversary settings. In sim-

lations, we fix the time horizon to be T = 50 0 0 0 . Since the im-

acts on all algorithms are similar, we only present results of

pecWatch-III. 

Fig. 9 shows the impact of detection probability p d on the cu-

ulative rewards and the cumulative switching cost. 

As expected, the cumulative reward grows with decreas-

ng slope as the detection probability increases. The cumulative

witching cost, however, has a decreasing trend. This is because the

arger the detection probability, the more accurate for the mon-

tor to evaluate each strategy; thus the best strategy is revealed
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Fig. 10. Number of timeslots to detect the first misuse with different number of 

radios. 

Fig. 11. Number of timeslots to detect the first misuse with different number of 

MUs. 

Fig. 12. Number of timeslots to detect the first misuse under different adversary 

settings. 
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more quickly, avoiding unnecessary switches and reducing cumu-

lative switching cost. 

We also study the impact the number of radios l , the number of

MUs m , and the types of adversary on the performance of our al-

gorithms. Figs. 10–12 illustrate the cumulative distribution function

(CDF) of expected number of timeslots to detect the first misuse.

In general, more radios or more MUs make it sooner for the mon-

itor to detect successfully. In Fig. 12 , the monitor takes the longest

time to detect the first misuse under fixed adversary setting, which

is because the monitor sticks to the same strategy for the whole

batch to prevent switching costs. If the monitor does not choose

the channels attacked by MUs at the first timeslot in a batch, it

will not detect misuse for the following τ − 1 timeslots. As a re-
ult, it takes longer time for the monitor to detect the first misuse

nder fixed adversary setting. 

. Conclusion 

In this paper, we studied the adversarial spectrum monitoring

roblem with unknown statistics by formulating it as an com-

inatorial adversarial multi-armed bandit problem with switch-

ng costs. As far as we know, we are the first to study such a

roblem. We proposed an online spectrum monitoring framework

amed SpecWatch and designed two effective online algorithms,

pecWatch-II and SpecWatch-III. The framework generally accom-

lish the challenge of considering switching costs while different

lgorithms accomplish the challenges of unknown MUs, imperfec-

ion detections, combinatorial strategies and adaptive adversary.

e rigorously proved that the weak regrets of two algorithms are

ounded by O ( T 2/3 ), which matches the lower bound of the general

AB-SC problem. Thus, they are asymptotically optimal. 

Despite that the two algorithms perform well both in theory

nd in simulations, they are not perfect. The time complexity of

hem is exponential of the number of channels. However, if we

rovide every strategy with a chance to be chosen, then this expo-

ential complexity is inevitable. But future works could be done to

trike the balance between the complexity and the overall perfor-

ance. This is a valuable research direction as our framework and

lgorithms can be applied to spectrum patrolling problems. Like Li

t al. [37] , regarding different locations as another type of channel,

ur algorithms will output the patrolling path instead of sequences

f chosen channels. In this case, we must address the combinato-

ial problem, which is one of our future research directions. 

Another research direction could be changing the parameters

daptively. Currently, all parameters will be chosen ahead of some

xed time and fix them until the full time horizon is reached.

owever, this may not be optimal because the MUs’ attacks

ould be very short, concentrated, and severe. Therefore adaptively

hanging the parameters could be a potential solution for these

cenarios. 
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