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Existing Multivariate Normality
(MVN) Goodness of Fit (GOF)
Tests either follow a known
asymptotic distribution (e.qg.
Mardia’s) or are empirical (e.g.
Malkovich and Affifi). When
samples are small the asymptotic
theory cannot be safely invoked.
Hence, their asymptotic
distribution percentiles are no
longer accurate. In such cases
empirical critical values (ecv)
are derived via Monte Carlo.

We have thus obtained ecv’s for
eight well known MVN GOF tests
for n=25(25)200, p=2(1)6(2)10
and medium and high p-variate
correlations. Using the escv’s we
statistically study several
characteristics of the unknown
emall sample distributions of
these MVN tests. Then we present
criteria as to when and where
the asymptotic critical values
can be safely used.

0 tr cti ckgr d.

This research stems from the
work to demonstrate our newly
developed MVN GOF test (Ozturk
and Romeu, 1992). We conducted
an extensive Monte Carlo power
study (under a Cornell Theory
Center award) to compare it with
eight carefully selected and
well established MVN GOF tests:
Mardia’s Skewness and Kurtosis,
Royston’s W, Cox and Small,
Malkovich-Affifi, Hawkins and
Koziocl’s Angles and Chi Square
tests. For space and brevity we

refer the reader to Romeu (1990),
for a complete list of references.

We soon realized how several of
these MVN tests lacked any
asymptotic distributions. And those
who had one, converged to it very
slowly, rendering them impractical
when samples were "small".

We also observed how some of these
tests (i) were prone to detect
certain types of departure from
multivariate normality (say
skewness) but not others (say
kurtosis). Or how (ii) correlation
among p-variates affected some
tests very seriously. Or how the
ecv’/s were (iii) severely affected
by sample size or (iv) by number of
p-variates. Or how (v) certain
algorithm results varied from one
computer to the other. Or a
combination of any of the above
mentioned problems.

We wanted to further investigate
such problems and to study how the
different tests fared under them.
But, lacking the theoretical tool
to undertake such comparative study
(i.e. small sample distributions)
we took an indirect approach. We
thus, used the ecv’s obtained by
simulating five or ten thousand
test results, to characterize the
unknown statistical distributions.

2.0 Research Methods,

The validation of our Monte Carlo
study is discussed elsewhere
(Romeu, 1992). In thies paper we
present the statistical results
regarding the mentioned problems of
the eight MVN GOF tests.



First, the effect of sample size
was investigated by regressing
ecv’s on inverse sample size
1/n, for fixed number of p-
variates and percentile (PCT).
Some results, for bivariate
normals, are shown in Table 1,
Each test (MTD), their
asymptotic critical values (CV),
the regression independent term
(Bo) and Index of Fit (IF) are
given. A 95% confidence interval
(CI) for each regression’s Bo,
for Mardia’s Skewness (MSK) and
Cox-8Small (Cox) test, cover
their asymptotic CV. However,
Mardia’s Kurtosis (MKT)},
converges much slower and its
95% CI for Bo doesn’t cover its
asymptotic CV.

Table 1: Regression ecv = f(n).
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MTD PCT Bo cv IF

MSK 0.90 7.79 7.78 0.99
MSK 0.95 9.67 9.49 0.98
MSK 0.99 13.77 13.28 0.98
MKT 0.90 1.63 1.65 0.99
MKT 0©0.95 2.08 1,95 0.99
MKT 0.99 2.90 2.58 0.92
COX 0.90 4.58 4.61 0,98
COX 0.95 5.99 5,99 0.94
CoX 0.992 9.10 9.21 0.94

Next we investigated the
"smallest" sample size n,
required for the safe use of
asymptotic critical values,
Table 2 show examples of
coverage (COV) of the 95th
asymptotic percentile (CV) by a
95% non parametric CI, derived
for that sample size (n) and no.
of p-variates (p). Verify how,
for different n and p, methods
varied widely. Again, Mardia’s
Skewness ecv’s cover the true
asymptotic percentile for n=200
while Kurtosis, which converges
at a slower rate, doesn’t.

Table 2: Approximate CI for ecv’as.
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MTD n p cov n p cov
MSK 50 2 NO 50 8 NO
MSK 100 2 NO 100 8 NO
MSK 200 2 YES 200 8 YES
MKT &0 2 NO 50 8 NO
MKT 100 2 NO 100 8 NO
MKT 200 2 NO 200 8 NO

Next we investigated the effect of
p-variate correlation. In practice,
the covariance matrix is seldom
known. Instead, it is estimated
from the data and used in the GOF
tests. In our power study we had
also chserved wide differences for
low and high correlation.

We investigated this problem by
taking, at prefixed and regular
intervals of the order statistics
(at 0,9(0.05)0.995) differences of
ecv’s obtained for rho=0.5 and 0.9.
There were two alternatives: (i)
this difference was statistically
zero (no correlation effect) or
(ii) there was an effect of
correlation. If so, this effect
produced a shift problem or a scale
one. Hence, the differences in
ecv’s would (or would not) be
independent of how far out they
were obtained. In the first case we
used (i) paired (Wilcoxon/Sign)
tests. In the second, (ii)
regression of these differences on
its percentiles. If there was a
significance difference in (i)
above, we obtained its 95% non
parametric CI.

In Table 3 we report some of these
non parametric 95% confidence
intervals for ecv differences, for
those methods that showed none or
very small effect of p-variate
correlation.



Table 3: CI for ecv Differences

Y L L s T T R T T T X

MTD P Lower Upper
Skewness 2 -0,22 -0,16
Skewness 4 0.12 0.26
Hawkins 2 0.018 0.025
Hawkins 4 -0.008 0.015
Cox-Small 2 -0.077 -0,012
Kurtosis 4 0.047 0.062
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We also investigated the effect
of the number of p=-variates on
ecv’s, Several MVN methods (e.q.
Koziol) required large n and
small p for its use, which is
not always met in practice. We
again used regression of ecv’s
on p-variates (for
p=2,3,4,5,6,8,10) for fixed
sample size and asymptotic
percentile. We verified how,
with the exception of Koziol’s
Angles and Hawkins’ tests, all
others heavily depend on p-
variates too.

We then reanalyzed ecv
differences for low/high
correlation, now for fixed
asymptotic percentile (PC) and
n, but increasing no. of p-
variates. We verified how, with
the exception of Royston’s and
Koziol’s Angles tests, all other
power results could be pooled.
An example is shown in Table 4.

Table 4: 95% CI for ecv diff(p).
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Tast PC n LB, UB.
Skewness 0.90 25 -0.48 0,13
Skewness 0.95 25 -0.47 0,36

Skewness 0.99 25

Of practical consideration is
the effect of hardware on the
calculation of ecv/s. We
observed some variation for two
tests (Royston’s and Koziol’s
Angles). We performed non

parametric paired comparisons
between ecv’s obtained in Syracuse
University’s IBM 3090 and Cornell’s
Supercomputer. Differences (fixed
p=2, n=50) for correlations of 0.5
and 0.9 were obtained for
successive ecv percentiles
0.9(0.,005)0.995. We followed the
same approach above described for
the analysis of correlation effect.
Descriptive statistics of some of
our analyses are presented in Table
5. For relative comparison of the
effect of these differences on
ecv’s, the mean ecv value, by
method, is also given.

Table 5 :Hardware effect comparison.
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Notice how ecv’s for Royston’s test
vary in the order of 15%, while
those for Skewness (MSK), Hawkins
and Koziol’s Chi Square tests are,
for practical purposes, negligible.
We conjecture that calculation of
sensitive quantities (e.q.
eigenvalues/eigenvectors) in the
denominators of Koziol’s Angles and
Royston’s algorithms account for
such large differences, when
processed in two significantly
different machines as those used.

A complete set of tables of small
sample ecv’s for the MVN GOF tests
discussed in this paper can be
found in Romeu and Ozturk (1991).

3.0 Research Results.

The mzin result of this paper
concerns the determination of the
appropriate sample size for
asymptotic values. Mardia’s
skewness test requires more than



100 observations before the use
of asymptotic critical values is
appropriate. The same holds for
Cox and Small and Keoziol. For
n=200, our ecv’s 95% CI results
cover the asymptotic values.
Mardia’s Kurtosis test converges
much slower and 85% CI obtained
for n=200 do not cover the
asymptotic percentiles. Hence,

a sample of size 200 is still
inadequate for using asymptotic
critical values. Since, in
practice, samples may be much
smaller than that, our empirical
critical values provide a useful
tool for the practitioner.

Oour ecv’s regression results
also indicate that test that
don’t have a known asymptotic
distribution (e.g. Malkovich and
Affifi) also converge as a
function of 1/n. Hence, a
function may be found that
approximates this test’s unknown
asymptotic distribution feor
large samples.

The next result of interest
pertains to the effect of p-
variate corxrrelation on the power
of the tests (or eguivalently on
their ecv’s). This is of
importance, since the covariance
matrix is generally unknown and
estimated from the samples. We
concluded that only two
procedures, Royston’s W and
Koziol’s Angles test (as well as
the Sigma Inverse implementation
of our own multivariate Qn test)
are seriously affected by p-
variate correlation. Separate
ecv’s have been provided for
medium (0.5) and high (0.9) rho,
for those two tests. All other
methods analyzed may be
considered, for practical
purpose, as approximately
correlation free and single
tables of ecv’s are provided.

Two MVN GOF tests have been found

guite sensitive to hardware effect:
Koziol’s Angles and Royston’s W. We
caution the practitioner to
calibrate our results with those of
his own machine before using our
ecv’s,

Finally, we have also shown how
empirical critical values, obtained
from simulation, can become
effective tools. The statistical
study. and comparison of the small
sample (unknown) distributions of
these MVN GOF tests was, both,
required but infeasible with the
conventional research tools (closed
form distribution). We had few
other alternatives, since the true
distributions were either unknown
or available only when the sample
size was very large, which rendered
them useless for our needs.

The use of the ecv’s as a
characterization of these unknown
small sample distributions allowed
us to investigate this problemn.
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Table 6: Example of ecv's power comparison results (n=25; p=2).

PERCENT REJECTIONS FOR N= 20000 TOTAL CASES.

METHOD ALPHA=0.,10 ALPHA=0,0% ALPHA=0,01

CHOLESKI 0.09710 0.04675 0.00920

SIGMA 0.09755% 0.04845 0.01025

M-SKEW 0,09860 0.04645 0.00910

M~KURT 0.09960 0.04975 0.01060

COX~-SMAL 0.09560 0.04860 0.00895

ROYSTONW 0.1058% 0.05415 0.01065

MALKOV 0.09960 0.04860 0.00910

KOZ-CHI 0.10155% 0.0%135 0.00985

KOZANGLE 0.10230 0.05140 0.00975

HAWKINS 0.10150 0,05100 0.01005
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MULTIVARIATE STANDARIZED GOF TEST

ORSA DATA: MULTIVAR. -

NULL: SOLID BLACK.



FILE: FILE FT32F001 A S5.U. COMPUTING AND NETWORK SERVICES VM/SP

ORSA DATA: MULTIVARIATE.
UU= 0.000000000000000000E+00 UV= 0,352405015379190445 RHO=
0.000000000000000000E+00

VARU= 0.139582037809304893E-02 VARV= 0,239539076574146748E-02

U( 1l }=-0.133451058921983667E-02
Vi 1l )= 0.407880592788740157

U{ 2 )= 0.395858632066939942E-01
VA 2 )= 0.326028326352823500

U( 3 )=-0.421448828398449937E-01
VA 3 )= 0.357090115939490235

U( 4 )=-0.117652969875390451E-01
V{ 4 )= 0.298031182791999805

U 5 )= 0.140294618081499151E-01
VA 5 )= 0.295249213806604696

U{ 6 )=-0.925887306348702199E-02
VAl 6 )= 0.321402206577264038

U{ 7 )=-0.434878810762080598E-01
VAl 7 )= 0.431905416609520462

U( 8 )= 0.171338962014607465E-01
V( 8 )= 0.324031796822023391

U 9 )= 0.467694689032516209E-06
V{ 9 )= 0.352499614142144896
PROB OF OF IS: 0.525699373074244747

o
2
o
o
]
22
28
8]
|

IS: 0.493340453424635075
IS: 0.526852196354867491
IS:s 0.513394828844348602
IS: 0.471236427420124920
IS: 0.793470992940267461
IS: 0.135780554148641944
IS: 0.760940726713653426
IS: 0.999998131976397697

PROB OF ERRCR OF
PROB OF ERROR OF
PROB OF ERROR OF
PROB OF ERROR OF
PROB OF ERROR OF
PROB OF ERROR OF
PROB OF ERROR OF

Vo0 WwNH



MULTIVARIATE STANDARIZED GOF TEST.

ORSA DATA: UNIVARIATE.

NULL: SOLID BLACK.



FILE: FILE FT32F001 A S5.U. COMPUTING AND NETWORK SERVICES VM/SP

ORSA ANALYSIS: UNIVARIATE.

UU= 0.000000000000000000E+00 UV= 0.352405015379190445 RHO=
0.000000000000000000E+00

VARU= 0.139582037809304893E~02 VARV= 0.239539076574146748E-02

15X 1 }=-0.133451056005173818E-02

VA 1 )= 0.407880592764176458

U( 2 )=-0.208448254037331276E-01

V{ 2 )= 0.411457020439948626

U( 3 )=-0.892307703477879244E-02

VAl 3 )= 0.406485598382310867

U( 4 )=-0.182316038099993027E-01

V{ 4 )= 0,403102811103540723

U{( S )=-0.399306685207473228E-01

v{ 5 )= 0.314848399837278622

U{ 6 )=-0.406319976815460726E-01

V{ 6 )= 0.350861596067087209

U{ 7 }=-0.362134233556734991E-01

VA 7 )= 0,326848602034276112

U{ 8 )=-0.223762058402355857E-01

V{ 8 )= 0.375435488879668156

U( 9 )= 0.467694689032516209E-06

Vi 9 )= 0.352499614142144896

PROB OF ERROR OF 1 IS: 0.525699373387963728
PROB OF ERROR OF 2 ISt 0.413320928690073350
PROB OF ERROR OF 3 ISt 0.527815626757881143
PROB OF ERROR O 4 1IS: 0.519146470097831700
PROB OF ERROR OF 5 IS8: 0.420809933678129675
PROB OF ERROR OF 6 IS: 0.553279983330174738
PROB OF ERROR OF 7 IS: 0.545477062421547032
PROB OF ERROR OF 8 1IS: 0.748212582174009572
PROB OF ERROR OF 9 IS: 0.999998131976397697



