The Journal of the
QUALITY ASSURANCE INSTITUTE

- tober 2000

Ol 2L

| _Soluti"ons 2000 o Volume 14, Number 4
[.1:—_-_ e e

i Designing Software Test
. _(Detective Work)

Page 10

CONTENTS

10

30

32

41

26
35

C2
C3
C4
13
17
17
17
21
23
25
29

OcCcTOBER 2000

features

A Discussion of Software Reliability Modeling Problems

OCTOBER 2000
VOLUME 14, NUMBER 4

Jorge Luis Romeu

Designing Software Test (Detective Work)
Len DiMuaggio

Participating in the Testing Phase Just Isn’t Enough Anymore

Elizabeth A. Clogher

Scheduling Software Test, the Project Life Cycle and
The Last Minute Bug
Len DiMaggio

Why e-is Here to Stay
Competitive Edge

departments

Editorial
Education Brief
New Members
Certification
Federation

QAD’s IT Quality Conference 2001
Spherion Technology
Soffront Software

QAI Membership
Genetics Computer Group
Moving?

Are you with IT?

Journal Advertising

QAI Subscriptions
Seminar Schedule

Canada News

www.qaiusa.com

EDITCRIAL BOARD

BOARD CHAIRMAN:

Peter Wilson, Ph.D., CQA, CSTE
Mosaic, Inc.

BOARD MEMBERS:

Robert H. Goerss
Consultant

Kirby Fortenberry, CQA, CSTE
Shell Senvices Internztional

Charles Hollocker, CQA
Process Technology Growth

Eldon Y. Li, Ph.D., CPIM, CDE
California Polytechnic State University

Peggy Myles, CQA
The Coca-Cola Company

Rebecca Staton-Relnstein, Ph.0., CQA
Advantage Leadersh p

Linda T. Taylor, CQA
Taylor Tech Management

William E. Perry, CQA, CSTE
QAl, Editor and Publisher

Stevi L. Ritch, CQA
QAl, Production Editor

Leah Frizzell
QAl, Assistant Production Editor
and Advertising

The Journal of the Quality
Assurance Institute

{Copyright © 2000) is published quar-
terly by Quality Assurance Institute
{QAl) with editorial and executive offices
at 7575 Dr. Philips Blvd., Suite 350
Crando, FL 32819-7273; 407-363-
1111, FAX: 407-363-1112, www.qaiusa
corn. QAl members receive four issues
per year at no additional cost, but may
order additional subscriptions at $43
each; subscription price to nonmembers
is $50. Individual copies of some back
issues are available at $10 each; wrile
or call QAL Reprints of 500 or more of
arlicles appearing in The Journal are
available at a low cost. Requests for
reprints or permission to reproduce may
be made by writing or phoning QA
Articles, letters to the editor, advertising,
and suggestions are walcome. Address
correspondence to QAl's office

A Discussion of Software Reliability
Modeling Problems

Originally published in The Journal of the RAC, First Quarter 2000

quarter of a century has passed since the first software reliability model appeared. Many dozens more, of vari-

ous types, have been developed since. Many practitioners still disagree on the practical uses of models in soft-
ware managing, staffing, costing and release activities. The present article examines this situation, discusses
some of its causes and suggests some approaches to improve it.

This author believes that the current user dissatisfaction stems from the manner in which reliability, as a concept, is ap-
plied to the software environment and on how the related models have evolved. This article begins by providing an over-
view of the characteristics of software reliability models and of their development efforts. This is followed by a discus-
sion of the assumptions underlying software reliability models and other related problems. Finally, some suggestions on
how to improve the situation are provided.

Software Reliability

Broadly speaking, reliability is the probability of satisfactory operation of a system or device, under specific conditions,
for a specific time. In software systems, the concept of reliability is complicated by several factors. An operator and hard-
ware subsystem is always associated with the software. Hence, documentation, training, and interface problems can
(directly or indirectly) induce software failures, thus becoming part of the reliability assessment process.

[t is also important to understand the origins of the concept of software reliability. It evolved as a result of the increasing
use of embedded software in already existing hardware systems. Hardware reliability had been successfully developed
and understood since the early 50's. It was only natural that the same type of hardware professionals (e.g., systems and
electronical engineers) would develop the first software models by extending and adapting their previously successful
hardware ones. But the hardware modeling techniques, as we will later see, did not always work well in the software en-
vironment.

After its development stage, hardware is mass-produced and the resulting industrial product is used in relatively similar
environments. For example, after the prototype has been developed and tested, a military helicopter is mass-produced and
flown by similarly trained pilots in attack and rescue missions.

Software, on the other hand, always remains a “prototype™ on its own, of which exact copies are made and used by a wide
variety of people with very different interests and applications. For example, matrix-inversion software may be used by a
high school student to solve a 2x2 system of linear equations or by a Ph.D. candidate to invert thousands of multivariate
correlation matrices in a simulation study.

The modeling stage is permanent for the (prototype) software product. Hence, its characteristics and problems have a
more significant impact in this environment than in the hardware one, as we will see next,

www.qaiusa.com OCTOBER 2000

...

: Modeling Problems

DA major problem encountered in the
© software reliability modeling activity
- arises from the involvement of two
- different groups of individuals, mod-
- elers and practitioners, each having a
. different product and process in
> mind and seeking a different result.
: The fundamental differences be-
- tween these two groups make the
- existing software reliability models a
. professional success for many mod-
. elers but unsatisfactory working
tools for many practitioners.

* Modelers are usually researchers or
. academicians while most practitio-
: ners are software developers. Acade-
- micians and researchers rely on pub-
. lishing papers, which are peer re-
: viewed and assessed for their theo-
- retical value by other academicians
- and researchers, to obtain their ten-
. ure, promotion or doctorates. To
. publish their work, modelers use so-
phistication statistical theories that
: require strict (and sometimes unreal-
- istic or unjustified) underlying as-
. sumptions.

* Practitioners (managers, developers)
* on the other hand, need to staff, cost,
- and release software products. Prac-
: titioners work with programmers,
- under time constraints and must rely
- on insufficient and sometimes defi-
. cient information. Software practi-
* tioners need models and approaches
- that are feasible (implemented with-
- out incurring exorbitant costs or ex-
- cessive burden) and practical (can be
- used to staff, cost, release the soft-
. ware, etc.)

. Theoretical models are based on
: many mathematically driven soft-
- ware assumptions that, in practice,

..

OCTOBER 2000

do not hold or are weak. In addition,
many models of the Black Box (e.g.,
time-based) class fail to capture sev-
eral other important factors that af-
fect software reliability.

Validity of Software
Reliability Model
Assumptions

Some software reliability model as-
sumptions do not hold or are weak
because they have a purely theoreti-
cal (mathematical) origin. Note that
not all model assumptions are inva-
lid all the time or in all the models.
Some (Black Box) model assump-
tions and related topics and the rea-
sons for their possible lack of valid-
ity are:

Definition and Criticality of Fail
ures: In many cases, failures are user
dependent and poorly defined. This
makes their identification in the field
also difficult.

Definition of Time Units: Include
calendar time, execution time, etc.,
which may differ substantially or
may not always be accurately re-
corded. Some models (Musa) have
found ways to deal with this by con-
verting units from one time domain
to another. The assumpticn also im-
plies that testing intensity is time ho-
mogeneous.

Fixed Number of Faults: Assumes
that no additional faults are intro-
duced and that every debugging at-
tempt is successful. Some models (e.
g., imperfect debugging of Goel) at-
tempt to address these issues.

All Faults Have the Same Failure

Rate: This implies that all faults
have the same probability of occur-

www.gaiusa.com

Romeu

rence. But failure probability is in :
fact associated with input domain -
and user profile. Hence, all failures :
are not equally likely. For example, :
a software failure occurs only when
a specific input is given. But some :
users may provide such input very :
frequently. For this user, the pro- :
gram will have a high failure rate. :
Another consequence of failures not :
being equally likely is that reliability :
will be affected by the order in *
which faults are discovered. Say two :
different testing teams have uncov- :
ered two different sequences of “n” :
faults. They may obtain two differ- :
ent reliability estimates (and this is
complicated by the specific user pro-
file).

All Software Faults are Always Ex- .
posed: Faults are encountered only if @
that part of the software where they
reside is exercised. If there is fault :
that prevents the execution of some :
part of the software until it is re- :
moved, the faults that exist down-
stream, in that part of the code, are :
not exposed until the initial one is
uncovered and removed. :

Faults are Immediately Removed. :
Testing will not usually be stopped :
once a fault is uncovered. Adaptive
procedures (removing/patching part :
of the code; restricting the input) :
will be used to continue the testing, :
while the fault is uncovered and .
fixed.

Only One Failure at a Time Occurs:
This is a required Poisson Process :
assumption and not all software nec- :
essarily complies with it. There may .
occur multiple failures simultane- :
ously {and not all faults will be cor-
rected before restarting the testing).

Modeling Problems

....................................

. Testing is Homogeneous: Testing
. effort is not always the same; per-
. sonnel may vary as well as time
+ dedicated to it and to other concur-
- rent functions. In addition, if a criti-
- cal fault is uncovered or a deadline
. approaches, testing may become
. more intensive.

- Failure Rate is (only) Proportional
- to Error Content: There are many
- other factors, such as user profile,
. complexity of the problem, lan-
. guage, programming experience,

. etc.

. Number of Failures in Disjoint
. Intervals is Independent: This is
- also another key Poisson Process
: assumption. There is a finite
* number of faults in the software,
+ which are sequentially removed.
+ If we encounter and remove a
: large number of faults in one in-
. terval, then in the next time in-
. terval there will be less faults to
: find, and vice versa. Hence, the
+ number of faults uncovered in
. two disjoint, adjacent time inter-
+ vals are affected by the number
. of faults previously uncovered.

. Times Between Failures are In-

: dependent: Since the number of fail-
- ures encountered in disjoint intervals
: is not independent, this associated
. assumption is not true either.

- Testing Proceeds Only After a Fault
: is Removed (corrected): This is an
- ideal situation that does not occur in
. practice. Adaptive procedures are
. used to proceed with testing.

- All the Code is Tested, All the Time:
: Some testing may occur before all
: the code is completed. Then, if a

fault is encountered and located in a
given module, this fault may be re-
moved or patched (adaptive proce-
dure) to proceed with the testing.

Run Time versus Think Time: Run
(test) ime models penalize develop-
ment strategies that spend more desk
(think) time analyzing the program
than in testing. Calendar time cap-
tures both of these activities (think
and run times) but this time meas-
urement is weak.

“I believe the current user

dissatisfaction stems from
the manner in which

reliability, as a concept,

is applied to the

software environment
and how the related
models have evolved.”

Jorge Romeu

Specific Prior Distribution: Some
modelers have attempted to deal
with the reality of different failure
rates for different faults by assump-
tion a prior distribution and then us-
mg a Bayesian model for the reli-
ability. The form of such a prior is
selected for mathematical reasons, in
order to obtain a closed form solu-
tion for the corresponding posterior.

Reliability Growth Continues with

Additional Testing Time: It is im-
plicitly assumed that, as test time

WwWw.gqaiusa.com

...................................

proceeds, new faults will be uncov-
ered and removed. Hence, the soft-
ware reliability will increase. This
precludes the introduction of new
faults as well as the increase in pro-
gram complexity by the maintenance
operation.

Seeded Faults Have the Same Fuail-
ure Rate as Indigenous: In this ap-
proach to software reliability, the
developer intentionally introduced a
number of faults in the program (e.
g., fault “seeding”). Then the
testing team ‘“‘uncovers”
some of them during testing,
along with other
“indigenous” faults (not
seeded, but actual program-
ming ones). Based on the
number of indigenous and
seeded faults uncovered, and
estimate of total number of
program faults is obtained.
This estimation approach as-
sumes that the complexity
and location of seeded faults
are the same as the complex-
ity and program location of
the indigenous faults. This is
not necessarily so.

Software Input and User
Profiles are Known and Representa-
tive: Some software reliability mod-
els are input domain profiles, which
are difficult to establish. Some users
exercise some parts of the code more
than others do, establishing a par-
ticular user profile. Estimating such
profiles constitutes a complex statis-
tical problem, involving multivariate
parameter estimation and goodness
of fit tests. In addition, these profiles
are user dependent, requiring one for
each different user.

(Continued on page 8)

--

OCTOBER 2000

Romeu

(Continued from page 6)

: Failure Data Collection is Accurate:
. In software development, the basic
activity is to develop good code.
- Data collection is usually a periph-
- eral activity that programmers are
- assigned, in addition to their work.
: Data collection forms (problem re-
. ports, etc.} are complicated and data
. elements such as exact times, etc.
: may not be recorded accurately.

: In addition, other issues associated
. with software development and
. model use, impact software reliabil-
ity model assessment. Some of them
. are:

. Software Doesn't Wear Qut with
- Time: This has always been a key
. difference between software and
- hardware reliability. Hardware de-
: vices “age”. Software also “ages” -
- just in a different way! As time pro-
. ceeds and software maintenance oc-
. curs, new functions, modules, hard-
. ware, capabilities, are added/
. modified. Its complexity increases to
: the point, that it becomes more eco-
: nomic to “retire” it than to continue
: maintaining it. This process is, con-
. ceptually, akin to hardware “aging”
processes.

: Development Phases and Fault Ex-
. posure: In different software devel-
. opment phases, different types of
. faults are uncovered. Hence, com-
bining failure data from different
. phases for model input may be detri-
: mental to the overall software reli-
- ability estimation.

EExperimentation: Many software
development experiments under-
: taken to assess software reliability
: models and methods have been im-

plemented using very specific prob-
lems and subjects. This situation
poses restrictions on the extrapola-
tion of results. The experimental
subjects are usually students or pre-
selected professional teams. The
problems are usually theoretical, or
replications of available real life
ones. Neither has been randomly se-
lected and may be far from represen-
tative. Experimental results are still
useful and provide valuable insight,
but care should be exercised in their
interpretation and especially in ex-
trapolation.

Additional Factors Not Accounted
For: Most software models are af-
fected by project requirements, soft-
ware environment and documenta-
tion, user profile, programmer and
management experience, and other
factors not accounted for in the
model. Their contribution to the un-
reliability of the software program is
therefore not reflected in the model
results.

Initial Reliability Estimations: In
some software models, initial esti-
mates are a function of (1) the proc-
essor speed, (2) programming lan-
guage used (via expansion rates) and
(3) error exposure rate. Program size
cancels out and does not constitute a
factor at this early time. Other previ-
ously mentioned factors that also af-
fect software complexity and reli-
ability are not included in this initial
estimation.

Fault Exposure Ratios: These ratios,
used for initial estimation, were ob-
tained several years ago. In a rapidly
advancing area such as software pro-
gramming, where new languages,
new environments (e.g., visual) and

www.qaiusa.com

..

technologies are coming out ever
day, such fault exposure ratios ma;
no longer be representative. In addi
tion, they were obtained from spe
cific environments and projects o
the past and may not represent the
projects and new application areas o
today.

Language Exposure Ratios: Thes:
ratios are subject to the criticisn
making of fault exposure ratios. b
addition, new programming lan
guages (e.g., Java) have appeare:
recently for which accurate languag
exposure ratios may not yet be avail
able.

Having a Large Pool of Softwar
Reliability Models from Which t
Choose: This constitutes an addi
tional and serious problem. Since n:
single model has been completel
established, software developer
must choose one. For example, th
developer may try fitting severz
models and then choose the mos
accurate among them, based on pas
behavior. However, can one be sur
that past behavior always guarantee
a model’s correct future behavior
Model selection is not an easy task.

Some Suggestions to
Improve Software
Reliability Modeling

Software reliability models are use
to assess the end result of the sofi
ware development process. This f
nal result (program) is a function ¢
at least three broad factors: peoplt
project, and environment. The pec
ple include programmers, manage
ment, testers, etc. The project is reg
resented by its characteristics: sizt
complexity, requirements, function:
interfaces, etc. The environment ir

OCTOBER 2000

.......................................

- cludes all the charactenstics of the
. software development shop: man-
agement style, software tools, meth-
* ods, etc. This author believes that, in
: addition to using and improving the
. software reliability models, re-
. sources should also be dedicated to
. obtaining a better understanding of
* one’s own software organization
: (strengths and weaknesses) and to
: improve it by training its people and
. readjusting its methods.

In-depth forensic analysis of an or-
ganization’s past work will reveal its
: strong and weak points. It will also
. provide for assessing key compo-
- nents of the three factors mentioned
. in the previous paragraph. This au-
. thor also proposed that error preven-
* tion, rather than correction, be em-
- phasized. Organizational improve-
. ments based on the results of foren-
: sic analysis may provide substantial
. mid and long-range software reli-
ability gains.

. It is known that about 70% of soft-
: ware faults result from problems in-
- troduced during the requirements
. definition and design phases
. (including software reuse problems).
© Dedicating more time and staff to
: better understanding, stating and
: conveying to programmers the spe-
: cial requirements and design issues
. of each project will pay off at the
- end. Better training, software tools,
programmer and resource time man-
- agement may also contribute to re-
: ducing programming stress and thus
. software errors.

Modeling Problems

Jorge Luis Romeu is a Senior Engineer with IIT Research In-
stitute’s (IITRI) Assurance Technology Center in Rome, NY,
where he has supported RAC, DACS and AMPTIAC. He has
30 years of experience applying statistical and operations re-
search methods in teaching, research and consulting. Romeu
has worked in petrochemical, construction, agricultural, reli-
ability, software engineering and pattern recognition applica-
tions of statistics and O.R. He was a mathematics faculty at
SUNY, where he retired Emeritus after fourteen years of
teaching statistic and computer science. Romeu, a Fullbright
Scholar to Mexico, has taught statistics, simulation and op-
erations research at several universities abroad. He is an Ad-
junct for the Engineering Program at Syracuse University,
where he teaches statistics and operations research. In addi-
tion, Romeu has developed and taught workshops and train-
ing courses for practicing engineers and statistics faculty and
has published several articles on applied statistics and statisti-
cal education. In 1997 he obtained the Saaty Award for Best
Applied Statistics Paper published in the American Journal of
Mathematics and Management Sciences (AJMMS). He is the
lead author of the book A Practical Guide to Statistical
Analysis of Materials Property Data. Romeu hold a Ph.D. in

Operations Research, is a Chartered Statistician Fellow of the
Royal Statistical Society, a member of the American Statisti-
cal Association and the Institute for Operations Research and
Management Sciences.

(tools, training), fault folerance
(recovery blocks, n-version pro-
gramming), fault detection/
correction (walkthroughs).

Finally, forensic analysis may also
- show that improvements are needed
- for important concepts such as faults
: avoidance, prevention techniques

...

OCTOBER 2000 www.galusa.com 9]

