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Abstract

An ordered sequence of plots of a new graphical
multivariate normality test, performed on samples of
selected distributions, is presented. The multivariate
sample is transformed into a set of linked vectors in
a bivariate space. According to where the vector
endpoints fall, in relation to the confidence ellipse,
multivariate normality is accepted or rejected. If
normality is rejected, we visually analyze where the
vector’s endpoints fall, outside the confidence
ellipse. We also compare the linked vector pattern,
in relation to the null (solid line) pattern. This visual
analysis provides an indication of how does the
alternative non normal distribution looks like.
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1.0 The Graphical Test.

The Multivariate Qn (Ozturk and Romeu, 1992)
graphical procedure can be divided into three parts: (i)
the confidence ellipse, (ii) the lower half of the pattern
and (jii) the upper half (Figure 1). When a sample comes
from a multivariate normal distribution, the
corresponding linked vector ciosely follows both halves
of the pattern and ends within the confidence ellipse.
When the sample comes from another distribution, its
vector endpoint falls outside the confidence ellipse. But
the area, outside of the ellipse it falls, and the pattern it
follows, is closely associated to the distribution it comes
from. In this paper we present a study of test patterns
from non normal aiternative distributions.
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2.0 Non Normal Alternatives.

The bivariate distributions in this study (Figure 2)
were chosen as to be (i) more skewed, (ii) more
kurtic than a bivariate normal and (iii) a combination
of these. In this paper we only present results for
three special cases: skewed, kurtic and combination.
Samples of size n= 100 were drawn and submitted to
our graphical test.

We used the Generalized Lambda Distribution
(GLD) to obtain an increasing sequence of bivariate
skewed distributions. We chose the bivariate
Uniform to have a flatter distribution than the
bivariate normal. We chose the bivariate T with 8
d.f., to have a peaked distribution. Both of these
were purely Kurtic (i.e. no symmetry problems).

Finally, we chose the Chi Square distribution with 10
d.f. as one which would be skewed and kurtic at the
same time. But the degree of skewness would be
consistent with that of the GLD used. And the degree of
kurtosis, with that of the t distribution.

We sampled these distributions extensively in a Monte
Cario power study for our test (Romeu, 1990). In this
paper, we undertake a visual study of the patterns
obtained when samples come from such distributions.

Existing multivariate normality GOF tests are not
graphical. Ours allows the user not only to accept or
reject, but to obtain a sense of where to go next (i.e.
what does de alternative distribution looks like) in the
last case.
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Figure 2. Statistical Distributions in the Skewness vs. Kurtosis plane.



3.0 Purely Skewed Distributions.

The pattern shown in Figure 3 corresponds to a
sample taken from GDLI1, a bivariate distribution
with skewness of 1.5 and kurtosis of 8.0 (purely
skewed). We see how the endpoint of the sample
linked vector falls off the upper left quadrant of the
confidence interval. This allows us to reject bivariate
normality at all (90%, 95%, 99%) levels.

In addition, we observe the distinct pattern of the
sample linked vector, sharply increasing in the first
half, then changing direction before ever crossing
the null distribution pattern.

We can use this test pattern to recognize a purely
skewed non normal alternative.
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4.0 Purely Kurtic Distributions.

In Figure 4 we show a sample from a bivariate Uniform,
having skewness of 0.0 and kurtosis of less than 6.0
(purely kurtic).

We observe how the sample vector endpoint now falls
way above the confidence ellipse, but on its vertical
center axis. In addition, we can now observe a totally
different vector pattern on the two halves of the linked
vector path. The first half is much closer to the null
pattern, crosses it and changes direction beyond the point
where the null pattern does. Then, the upper half moves
sharply upward.

This is a totally different pattern from the one presented
in Figure 3, and allows us to recognize the sample as
coming from a symmetric, flat, non normal distribution.

The pattern corresponding to a leptokurtic distribution is
not presented for lack of space, but is also distinctive
(Table 1).



5.0 Combined Skewed/Kurtic Distributions.

In Figure 5, we show a sample of pattern from a
mixed skewed/kurtic distribution: the Bivariate Chi
Square with 10 d.f.

We can see how the sample linked vector endpoint
also falls off the confidence ellipse, entirely to its
left. We can also notice how the vector pattern
remains, during its entire trajectory, before (lst.
haif) or below (2nd half) the pattern of the null
vector, which it never crosses. This characteristic
pattern of the sample linked vector also provides a
distinct test visualization.

It is with this graphical visualization that we
recognize this sample as coming from a combined
skewed and peaked non normal distribution.

6.0 Results,

On Table 1, we show a graphical comparison of six
patterns of the sample linked vectors. The patterns
have been subdivided into three parts: (i) lower and
(ii) upper halves of the vector trajectory and (iii)
endpoint position with respect to the confidence
ellipse.

We have classified the six non normal distributions
under study into three groups: (i) skewed, (ii) kurtic
and (iii) combination. GLD-2 and GLD-3 are two
bivariate distributions generated using the
Generalized Lambda Distribution. Its objective is to
provide, for comparison, an intermediate
(skewed/kurtic) result between, respectively, the flat
bivariate Uniform and the highly skewed GLD-1.

We can observe three distinctly different linked
vector patterns, corresponding to these three non
overlapping distribution classes. Hence, when
rejecting multivariate normality, it is now also
possible to identify the pattern of the sample and
then to, (i) make an educated guess as to which (non
normal) alternative

distribution we want to test next. Or we may want to (ii)
assess the type of non normal departure we are dealing
with in order to implement the transformations necessary
to redress the problems.

None of the other multivariate normality tests studied
provides this capability.
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The present paper studies a statistical method for assessing distributional as-
sumptions of multivariate data, with graphical applications.

This new GOF test fills an existing gap in the multivariate GOF area. We have
developed a statistically powerful procedure, applicable to relatively small samples
from multivariate populations of an arbitrary number of p-variates. In addition,
our proposed procedure can also be graphically implemented.

Statistical graphical procedures (Wang (1978)) are principally used (a) to de-
scribe the data (e.g. histograms), (b) to ascertain informally their statistical hy-
potheses (e.g. residual plots in regression) and (¢) to aid in the calculation of values
(e.g. power nomograms in ANOVA). They are lacking, in the multivariate context,
due to the higher dimensionality problem. Some current graphical procedures that
describe the multivariate data include Chernoff faces, Andrews charts, line/star
profiles, scattergrams and decomposition into principal/factor components.

But in general, multivariate graphical metho%s are few, complex to interpret,
difficult to implement and quite constrained. There has been, however, increasing
interest in these procedures, both in theoretical (Wilk and Gnanadesikan (1968),
Cleveland (1987)) as well as in more applied data analysis (Fisher (1983), include
the recent ASA paper) statistical procedures.

With the current development of fast computing capabilities, the situation has
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improved significantly. Our graphical test statistic, denoted @, = (U, V), where u
and v are the coordinates of the point @J,, is based on some functions of the ordered
statistic. @, can be represented by a linked vector in a two dimensional space. And
the test can also be analyzed graphically by examining whether the point Q. falls
within the confidence ellipse and whether the linked vector follows a well defined
pattern {the null pattern), both derived under the null hypothesis of multivariate
normality. Therefore, our test can be performed analytically and graphically in the
same rigorous statistical way.

Some graphical examples developed for a set of bivariate alternatives, following a
design pattern that studies increasing skewness, kurtosis and a combination of these,
follows. We have developed a table of graphical characteristics of our statistic,
according to each of these non normal alternatives. These serve the purpose of
identifying a possible alternative when multivariate normality is rejected. Finally,
the well known Setosa Dataset of Fisher (19xx), is used as an example of data
set that does not conform to multivariate normality because it tends to be more

leptokurtic and skewed than what would be expected.



