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Abstract — Monitoring software quality in a development 
project is an important task required of project management, 
especially for large-scale projects.  Our primary interest is 
evaluating quality of a system’s structure and implications of 
the structure for project management, maintenance, and 
testing.  Without the help of source code analysis tools it is 
difficult to understand a large project, evaluate its quality, 
and track progress effectively.  In this paper we discuss 
application of tools developed for this purpose to the open-
source Mozilla project. 
 
Index Terms — Dependency analysis, metrics, open-source, 
software quality. 
 

I. INTRODUCTION 
 

onitoring software quality [1] in a development project 
is an important task required of project management, 
especially for large-scale projects.  This paper presents 

results of an empirical study of a large open-source project, 
Mozilla. Our primary interest is evaluating the quality of a 
system’s structure and implications of the structure for project 
management, maintenance, and testing.   
 
Without the help of source code analysis tools it is difficult to 
understand a large project, evaluate its quality, and track 
progress effectively [2]. In this paper we focus on analysis 
based on static type dependency between source code files. 
The tools, discussed here, are used to generate different chart-
based and graphical views of a project’s current state. The 
paper first presents the dependency model used and gives a 
brief description of our analysis tools.  It then analyzes the 
Mozilla project. 

 

 
The results provide significant insight into the quality of the 
systems analyzed and provide some hints about how to 
improve their structure. 

II. DEPENDENCY MODEL 
 
This paper is focused on dependencies between files, based on 
the types and global functions they contain.  We do this 
because files are the units for analysis, management, and 
testing in most development organizations.  All of our data are 
presented as direct dependencies.  That is, we do not show the 
transitive closures of the dependency graph.  Analysis is 
carried out this way because, for large systems, the transitive 
closure becomes very dense and hard to interpret. 
 
Dependencies between software files are essential so that one 
component may provide services to another.  However, 
dependencies complicate the process of making changes, 
perhaps to fix latent errors or performance problems, because 
of the effects a change may have on other files.  When files 
each bind to many other files and mutual dependencies exist 
between them, maintenance and testing may become quite 
difficult to carry out effectively.  It is not uncommon for a 
change in one file to precipitate a cascade of changes in other 
files, especially in the presence of mutual dependencies. 
 
The dependency model used throughout this analysis is given 
below.   
 
Dependency Model - file A depends on file B if:  
 
– A creates and/or uses an instance of a type declared or 

defined in B 
– A is derived from a type declared or defined in B 
– A is using the value of a global variable declared and/or 

defined in B 
– A defines a non-constant global variable modified by B 
– A uses a global function declared or defined in B 
– A declares a type or global function defined in B 
– A defines a type or global function declared in B 
– A uses a template parameter declared in B 
 
These rules intentionally do not acknowledge dependency of a 
base type on its derived types even though it is possible that a 
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derived type modifies protected data members of the base.  
Doing so, we believe, would identify potentially many false-
alarm dependencies in well designed systems.  It would be 
interesting to compare analyses of a major system with this 
assumption and with a model in which the base is declared to 
depend on all derived types if it provides protected data1. 
 
There is one more important qualification we have to make 
about this model.  In much of the code base we’ve analyzed 
for this paper there is a significant amount of code duplication 
across the directory structures analyzed.  If we accept 
duplicate code our tool is not strong enough to sort out which 
instance is being referenced by another file, and so we will 
misclassify some dependencies. We’ve found these 
misclassifications lead to larger predicted mutual 
dependencies than are actually present in the system. Our 
solution currently is to eliminate all duplicate code.  This 
results in some missed detections, but we want to err on the 
side of conservative estimate of coupling rather than too 
pessimistic estimate.  Part of our future work will be directed 
to a more thoughtful handling of these ambiguities. 
 

A. Architectural View of Dependency Analyzer (Depanal) 
DepAnal’s goal is to find dependencies between C/C++ 

source code files based on static type analysis.  Dependency 
relationships between the files are determined by the model 
described above, as in [1] [3] [4]. DepAnal makes two passes 
over each file in the project, as shown in Figure 1.  
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Figure 1 - Dependency Analyzer Architecture 
 
First Pass: DepAnal processes each line of code in each file to 
capture user-defined types (class, struct, union, enum, typedef, 
etc…), global functions, and global object declarations.  These 
are stored with fully qualified scope information for the 
second pass. 
 
Second Pass: DepAnal again processes each line of code to 
search for creation of types, global function invocations, and 
global object use to find dependencies between files.  Our 
approach is similar to [5] for data collection and analysis, but 
provide different types of data transformations, presentation, 
and analysis.  
 
The DepAnal tool collects data from the source code with the 
help of a C/C++ tokenizer and semi-expression composer, 
shown in Figure 2.   Semi-expressions are sequences of tokens 
                                                           

1 We are planning to do this, along with several other extensions to our 
analysis, as later steps in our research. 

that end with a semicolon, an open brace, or a closed brace, or, 
in the case of preprocessor statements, that end with a new-
line.  We have found that collecting semi-expressions as part 
of the scanning process tends to simplify code analysis.  
Collected information is stored in an STL based data container 
in memory. 
 

Tokenizer Semi-Expresssion
Analyzer Collecting; 

definition and declartion of
types - functions - global objects

C/C++
Source Code

 
 

Figure 2 - Collecting data from source code 
 
The internal architecture: The core task is to assemble useful 
information from collected data in a representation that gives 
easily comprehended views of the current state of an analyzed 
project.  DepAnal’s outputs are all text based.  Charts showing 
the system’s state of health are prepared using Microsoft 
Excel.   
 
The goal is to build a tool that can be used to constantly 
monitor evolution of the state of large software systems and 
provide guidance about where detailed quality analysis and 
refactoring are needed. 
 
We also developed three adjunct tools that provide additional 
views of the data: 
 
1. Strong Component Analyzer: SComp2 builds a 

dependency graph from the data provided by DepAnal 
and analyzes its strong components, that is, sets of files 
that are mutually dependent.  It then performs a 
topological sort of the strong components to show an 
ordered flow based on dependency.  Finally it expands the 
strong components, within the sorted component order, to 
arrive at a representation of all the files as well ordered as 
is possible when there are mutual dependencies.  This 
provides a candidate for testing order of the files that 
attempts to minimize re-testing when latent defects are 
found and repaired.  

2. Size and Complexity Analyzer:  Anal3 counts the number 
of lines of source code in each function and analyzes each 
function’s cyclomatic complexity, measured by the 
number of regions enclosed by the control flow graph of 
the function.  Anal also evaluates the total line count and 
sum of the complexities of all of the functions in each file. 

3. DepView: Generates 2D graphical display of components 
and their dependency relationships.  

 
What the DepAnal tool does not do: it ignores all macros and 
it makes no attempt to identify unused code.  Its parser is not a 
full implementation of a C++ recognizer, but rather an ad-hoc 
implementation of the rules described in section II.  We have 
checked manually its results on modest size projects and run it 
many times on our own code, as it evolved, and believe that 

                                                           
2 The first implementation of this tool was implemented by Srinivas 

Neerudu, now with Microsoft in Redmond, Washington. 
3 Perhaps we could have chosen a better name for this tool. 
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the results are accurate, within the limitations described in this 
paragraph. 
 

III. DEPENDENCY ANALYSIS RESULTS 
  
The data presented in this section has been collected from the 
large open-source Mozilla project.  All of our findings are 
based on the dependency model discussed in the previous 
section.  We present several different views of the dependency 
data for both projects and draw some conclusions about what 
such data can disclose concerning a project’s implementation. 
 
The Mozilla project is a very large project developing browser 
tools for many different platforms.  It consists of many 
thousands of files, and so is a typical example of the large 
systems we wish to explore [6]. The Windows-based version 
of this software was chosen for analysis, as we are familiar 
with that as a programming environment and have all the tools 
to execute the various builds required for this study.  We have 
examined the entire Windows build as well as several 
constituent libraries and adjunct tools, 6193 files in total, 
generating builds for each before proceeding with our 
analysis. 
 
The analysis results are presented for several data sets, in three 
views: 
 
1. Fan-in: the number of files that depend on a file, for each 

file in the analysis set, and related fan-in density histogram. 
2. Fan-out: the number of files that a file depends on, for each 

file in the analysis set and related fan-out density histogram. 
3. Strong components: groups of files that are all mutually 

dependent and its related strong component density 
histogram. 

 
We examine each of these views and interpret their data with 
respect to measures of project implementation strengths and 
weaknesses they reveal.  Type dependency fan-in and fan-out 
have been discussed before [7] [8] [9] with results presented 
similar to those shown here.  We focus on somewhat different 
aspects of program implementation than discussed in those 
papers. 
 

A. Mozilla Data Collection 
We downloaded version 1.4.1 of the Mozilla Win32 

configuration [10] [11]. This included the entire build, which 
makes many executables and libraries.  We were able to build 
all the libraries and executables in about a week’s effort, using 
the information provided on www.mozilla.org. This involved 
making a few recommended changes to make files, setting 
environment variables, and settings in for the Visual Studio 
C++ compiler, used for all the builds for this paper.   
 
Note that our analysis pertains only to the Mozilla source 
code, but we wanted to ensure that we analyzed exactly those 
files used to create individual executables and libraries.  It 
took some time to understand the required directory structure, 

make some modifications to that to suit our analysis, and then 
make trial builds, but the process went surprisingly smoothly.  
 
We built some simple parsers to find all the files included in a 
specific build, based on compiler output.  This included all 
common code and header files.  The statistics for this process 
are: 
 

Number of executables: 94 
Number of dynamic link libraries: 111 
Number of static libraries: 303 
Number of source files for Win32, v 1.4.1 6193 

 
The information provided on the Mozilla web site was very 
well prepared, easy to digest, considering the size of this large 
project, and straightforward to use.  We chose this project 
because of the quality of its tools and the fact that it has a very 
large code base. 
 
The analysis tools developed for this research were able to 
digest the entire code base of 6193 files and perform all the 
analyzes in approximately 1 day on a PC with 1 Gigabyte of 
random access memory, running Windows XP Professional, 
with Pentium IV Processor.   
 

B. Fan-In Data Extracted From Mozilla GKGFX Library 
 Figure 3, below, shows fan-in for each of the files in the 

Mozilla GKGFX library.  This plot analyzes all of the 
dependencies on each of the 598 source code files in the 
library from within the library.  When we analyze the entire 
build many of these fan-in numbers become larger.   
 
A file with large fan-in is desirable from the perspective that it 
demonstrates high reuse of the types defined in that file4.  
However, should that file have less than desirable quality 
attributes one would expect to see a high probability of 
change, not only for that file, but also for many of the large 
number of files that depend upon it. [12]  

 
Figure 3  - Mozilla GKGFX Library Fan-in 

 
There are scores of files, shown in  Figure 3, with very large 
fan-in.  All of these should be important targets for quality 
analysis, in order to effectively manage the change process 
during development.  High fan-in coupled with low quality 

                                                           
4 We would expect to see high fan-in for some utility library routines, for 

example. 
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creates a high probability for consequential5 change [13]. We 
have also looked at the wealth of change data provided by 
Mozilla’s associated change data log to understand this 
process better.   
 
In Figure 4 we show fan-in density for the same library.  This 
is simply a histogram for the data in  Figure 3. This plot shows 
that a large fraction of the source code files have high fan-in, 
characteristic of a widely used library. A library with this 
profile should be given high priority for analysis by the test 
team and quality analysts.  
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Figure 4 - Fan-in Histogram for Mozilla GKGFX Library 
  

C. Fan-Out Data Extracted from the Mozilla GKGFX 
Library 
Fan-out for the GKGFX library is shown in  Figure 5, below.  

A file with large fan-out may be symptomatic of a weak 
abstraction.  We expect that a source file may carry out its 
assigned tasks with the aid of a few trusted delegates and 
perhaps a few references to commonly used utilities.  
However, depending on scores of other files may indicate a 
lack of cohesion – file is taking responsibilities for many, 
perhaps only loosely related, tasks and needs the services of 
many other files to manage that.   

 
Figure 5 – Mozilla GKGFX Library Fan-out 

 
 Figure 6 shows a Fan-out histogram for the data in  Figure 5.  
There are a significant number of files with large fan-out.  If 
one follows the classic test model, testing code that only 
depends on already tested code, this profile suggests difficulty 
scheduling testing for this library.   

                                                           
5 By consequential change we mean a change induced in a depending file 

due to a change in the depended upon file. 

 
Figure 6 – Fan-out Histogram for Mozilla GKGFX Library 

 
Automated test schedule planning tools can provide significant 
help for this, but, we show below that there may still be 
persistent problems creating a satisfactory test sequence for 
libraries with many high fan-out files 
 

D. Strong Components in the Mozilla GKGFX Library  
A strong component is a set of source code files, elements in 

the dependency graph that are mutually dependent.  Any given 
file from a strong component depends, either directly or 
indirectly6 , on every other file in the component.  There can 
be no complete dependency ordering within a strong 
component, so there is no way to prepare a classic testing 
schedule based on testing only already tested code.  
Essentially the strong component must be treated as a unit.  
The larger strong components become, the more difficult it is 
to adequately test.  Figure 7 shows a strong component 
histogram for the GKGFX library.  There are many strong 
components of modest size, and one huge component, 
consisting of 119 files.  Presence of the very large set of 
mutually dependent files, defined by this strong component, 
indicates difficulties in carrying out a classic testing program 
for this library.   
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Figure 7 – Mozilla GKGFX 
Library Strong Components 

Figure 8 –GKGFX Strong 
Components 

 
The dependency coupling that forms strong components may 
be due to the use of non-constant global data [14], to callbacks 
that provide notifications to a caller distant in the dependency 
tree, or to mutual dependencies on types defined across the 
strong component.  Whatever the source, they indicate 
problems with testing and possibly with change management, 
due to consequential changes to fix latent errors or 
performance problems [13]. 
 
Another issue that this plot illustrates is the lack of well 
defined modules.  The dependency model we use for this 

                                                           
6 Type-based dependency is a transitive relationship.  For reasons 

discussed earlier, we chose to show only direct dependencies. 
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analysis recognizes mutual dependencies between declaration 
and implementation of a type or global function.  So we would 
expect, for non template-based source code, to see most files 
appearing in strong components of size two, or a few more 
perhaps, reflecting the design of a module with declarations of 
all types provided by the module in a header file and 
implementations in a corresponding implementation file, 
ideally of the same name.  Here, Figure 8, we see that most of 
the files in this library do not fall into the classic module 
structure. 
 
In Figure 9, each circle represents a strong component; 
number on the circle shows how many files are in that strong 
component. In the figure, largest strong component consist of 
119 files, lines from center of the circle show fan-outs and 
lines coming the left corner of the circle show fan-ins to this 
component.  
 

 
Figure 9 –This figure shows dependencies of only two of the 

largest strong components with other components. 
 
In Figure 9, we show only external dependencies among 
components, besides this, there are large numbers of 
dependencies between the members of a component. 
 
 

 
Figure 10 – Internal dependencies of Component 52, the 

largest GKGFX strong component. 
 

If strong component size gets larger, it reduces the ability to 
adapt to new change, since change may result in further, 
consequential, unexpected changes. This reduces the gain 
from change, and management may no longer accept new 
changes after some point. This illustrates how an un-
maintainable system may be created. 
 
Figure 10 shows how files are densely connected to each other 
in the largest of the GKGFX libraries biggest strong 
component.   This component will have a very large risk 
associated with its testing.  Because of its internal dependency 
density, any change is likely to cause a cascade of 
consequential changes requiring further testing. 
 
Including external fan-in and fan-out dependencies of the 
largest strong component in GKGFX, shown in Figure 11, 
reveals that if any other depended-upon component changes; 
Component 52 also needs to be tested to make sure that it still 
performs according to its requirements. 
 
Approximately half of the dependencies shown in Figure 11, 
below are Fan-In dependencies on the largest strong 
component.  Consequently all of those external files will 
suffer test risk inherited from the component due to their 
dependency. 
 

 
Figure 11 – Internal & External Fan-In and Fan-Out 
dependencies for largest GKGFX strong component  

  

IV.  CONCLUSIONS 
 

In summary, type-based dependency analysis appears to be a 
useful tool with which to direct implementation and testing of 
large projects.   
 
We can draw conclusions about: 
– Quality of abstractions used in the project, based on fan-

out of individual files. 
– Potential for consequential change when files with high 

fan-in have poor quality. 
– Difficulty preparing effective test plans when files have 

high fan-out, especially in the presence of mutual 
dependencies. 

– How well the project is packaged into modules. 
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The empirical study has demonstrated that useful information 
about significant problems in both large and small systems can 
be identified without a detailed knowledge of the entire code 
base. 
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