
Strategy Pattern

Jim Fawcett
CSE776 – Design Patterns
Fall 2014

Motivation

Code analysis requires parsing of code text that entails detection of
specific language constructs and storing results. Placing the detection
and storage in one class isn’t desirable for several reasons:

• Each grammatical construct needs a specific rule for detection and
there are many such rules.

• The actions required after detection depend on which rule matches
the current context.

• Actions may depend on the results of the actions of other rules.

Parser uses Strategy

Parser

TokenCollection

parse()

next()

<<Interface>>

IRule

doTest(ITokenCollection*) :

bool

DetectClass DetectFunction DetectDeclaration

<<Interface>>

IAction

doAction(ITokenCollection*)

pRepositoryaddAction(IAction*)

doActions(ITokenCollection*)

PushClass PushFunction

Applicability

Use the Strategy Pattern where:

• Many related classes differ only in their behavior (rules, actions)

• You need variants of an algorithm (rules, actions)

• An algorithm uses data a client shouldn’t know about (Token
Collections)

• A class defines many behaviors and these appear as multiple
conditional statements in its operations. Instead, move related
conditional branches to their own Strategy class.

Structure

Context

ContextInterface()

<<Interface>>

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Participants

• Strategy (IRule, IAction)

• Declares interface common to all ConcreteStrategies

• Context uses this interface to call the algorithm defined by a ConcreteStrategy

• ConcreteStrategy (DetectClass, PushClass)

• Implements the algorithm using the Strategy interface

• Context (Parser for rules, Rule for actions, Repository)

• Is configured with Concrete Strategy objects (rules, actions)

• Maintains references to Strategy objects (Builder maintains references)

• May define an interface that lets Strategy access its data (Repository)

Collaborations

Collaborations

• Strategy (Rule, Action) and Context (Parser) interact to implement
the chosen algorithm.

• A Context (Parser) may pass all data required by the algorithm
(TokenCollection) to the Strategy (Rule) when the algorithm is called.

• Alternately the Context may pass a reference to itself to the Strategy.
That lets the Strategy call back on the Context as required.

• A Context forwards requests from its clients to its Strategy. Clients
usually create and pass a ConcreteStrategy object to the Context
(Builder); Thereafter clients interact exclusively with the Context.

Consequences

• The Strategy Pattern has the following benefits and drawbacks:

• Hierarchies of Strategy classes define a family of algorithms or behaviors for
Contexts to reuse. Inheritance can help to factor out common functionality of
the algorithms.

• Encapsulating the algorithm in separate Strategy classes lets you vary the
algorithm independently of its Context, making it easier to switch, understand,
and extend.

• Strategies eliminate large sets of conditional statements.

• Clients must be aware of different Strategies (can use Builder to mitigate)

• Communication overhead between Strategy and Context

• Increased number of objects

Implementation

• The Strategy and Context interfaces must give a ConcreteStrategy
efficient access to data it needs from the Context.

• Strategies as template parameters

• Templates can be used to configure a class with a Strategy. This makes sense
when only one Strategy, selected by the client, is used for the duration of the
processing of an algorithm. Sorting is one example.

Code Examples

• Flight Strategy

• StrategyPatternCode

• Sorting Strategy

StrategyPatternCode

Know Uses

• Parsers used in CSE681 – SMA and CSE687 – OOD

• Control systems where the processing for an operation depends on
the operation’s context, e.g., flight navigation control.

• Games where player’s may choose one or more strategies to achieve
some objective.

• Software tools like Code Analyzers that use parsers.

• Graphical processors that build parse trees, e.g., browser and its
HTML parse tree

Related Patterns

• Decorator

• Both Decorator and Strategy can dynamically add new behaviors

• Template Method

• Template method provides algorithm steps defined by a template

• Composite

• Both Composite and Strategy build processing out of predefined parts

End of Presentation

