

CSE776 – Design Patterns

 Summer 2006

Design Notes

Jim Fawcett

CSE776 – Design Patterns

Summer 2005

This set of notes grew out of a conversation with a frustrated former student. Tony had been reviewing a design he prepared and liked with his manager. His manager raised a number of objections that Tony felt were off target, but had a hard time being convincing about the quality of his design. I know Tony well, and expect that his design, was, in fact, well done.

Tony dropped me an email, telling me of his frustration, and asking advice about what to do in these situations. He has read a number of books I recommend about designing well (see references on next page), and while they give really good advice, there is so much there, that it is hard, in real-time, to pick out the right argument or point of view, to make good points during a design critique. There is just too much information available to mentally sift quickly enough to marshal good arguments about a design.

We talked about putting together a synopsis or skeleton of some of these ideas, and this is my first draft of that. The idea is to pull together a few pages that capture some of the most important fundamental design ideas to use as though-provokers for design and for design reviews. I don’t believe this draft is anywhere near complete. I don’t think its volume needs to expand a lot. But I don’t think the ideas are stated strongly enough or in a way that is as useful as it should be.

This is an open invitation for anyone to contribute, either with additional or altered guidelines or code examples of these ideas. It is on my agenda to pick out some examples from the class demos for CSE681 and CSE686, but other simple demos would be welcome.
References:

1. Design Patterns, Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson, and Vlissides, Addison-Wesley, 1995
2. C++ Coding Standards, 101 Rules, Guidelines, and Best Practices, Sutter and Alexandrescu, Addison-Wesley, 2005
3. Effective C++, Third Edition, Scott Meyers, Addison-Wesley, 2005
4. Refactoring to Patterns, Joshua Kerievsky, Addison-Wesley, 2005
5. C++ Common Knowledge, Stephen Dewhurst, Addison-Wesley, 2005
6. Design Principles and Patterns, Rober C. Martin, http://www.objectmentor.com/resources/articles/Principles_and_Patterns.PDF
7. Many other papers by Robert C. Martin, http://www.objectmentor.com/resources/listArticles?key=author&author=Robert%20C.%20Martin
8. The Practice of Programming, Kernighan and Pike, Addison-Wesley, 1999
Effective C#, Bill Wagner, Addison-Wesley, 2005

9. Software Development Goals

To create code that:
1. is coherent
a. Start with concept and evolve into an architecture

b. Capture organizing principles, critical issues with proposed solutions, partitions with responsibilities

c. Stop elaborating when elaboration has little meaning

d. Try to preserve conceptual integrity throughout the implementation

2. is correct
a. Hard to do this without building in stages, module by module

b. Fix all know flaws before proceeding, otherwise fixing and testing grow exponentially.
3. is maintainable
a. You profit from building products, not fixing bugs
4. is readable
a. One person writes a module, many read it, if it is useful.
5. is trace-able

a. Don’t allow many variations of a “reusable” component to exist in your products.

b. If you find a defect, how will you find all the variants, and which of those should be fixed?
6. has low change impact
a. Changes in design and implementation, during development, are constant, due to changing requirements, defects, performance problems, and added functionality.
b. You don’t want a change in one module to cascade into many changes in other modules that use it.

Fundamental Design Principles

1. Partition large systems into cohesive modules

a. Favor low fan-out (cohesive) and high fan-in (large reuse)
2. Minimize strong coupling between modules
a. Depending on concrete classes and invocations makes a design brittle – easily broken – and hard to change – high change impact.
b. Prefer instead to couple to interfaces.
3. Liskov Substitution Principle

a. Base class pointers or references can be replaced by Derived class pointers or references without any knowledge other than the base class interface contract.

4. Open/Closed principle
a. Reusable components should be Open to extension, but Closed to modification

b. Do this by:

i. Supplying base class hooks in libraries, from which application specific code derives.

ii. Use templates that accept policy and traits arguments.

5. Dependency Inversion Principle

a. Clients and servers should depend on abstractions, not implementations

b. Implies the use of interfaces and object factories.

6. Interface Segregation Principle

a. Clients should not have to depend on interface elements they do not use. This means that interfaces need to be well factored.
i. Consider using base class mixins (multiple inheritance of orthogonal classes)

ii. Consider a deriving from a template class that uses the derived class as a template parameter.
Seven Implementation Principles
1. Keep It Short and Simple

a. Classes are not easily understood or tested if they have large or complex functions.
b. Modules are not easily understood if they have too many functions.
2. Encapsulate in Classes

a. Ensure that all operations on a data structure are valid by encapsulating both in a class. Ensures operations on data are consistent and coherent.
b. Manage resources effectively in the presence of exceptions by allocating in member functions and de-allocating in the destructor.

c. Avoid global data or public member data like the plague – they are a plague.
3. Use inheritance to model “is-a” relationships when you need substitutability
a. A base class models behavior for a family of derived classes.
4. Use composition to model “part-of” and “implemented-by” relationships

a. Composition provides exclusive ownership to the composer of a private instance, entirely under its control.

b. No other entities have access to the private instance, except through the actions of the composer.
5. Use interfaces and object factories to break build dependencies between sub-systems.
a. Under this rule, a subsystem can be modified and rebuilt, and subsequently used by the system without rebuilding any other part of the system.

b. Simply copy the subsystem dynamic link library into the bin directory of the system. The next time the system runs it will be loaded.
6. Use “hooking” base classes or “command objects” to allow resource libraries to call application specific code.
a. Some variation on these structures is used by all event-based programming models.

7. Avoid deeply nested inheritance hierarchies.

a. Inherit for substitution, not implementation.

b. Prefer inheriting from interfaces or abstract classes.
8. Use templates to support extension without modification
a. Supports the use of policies and traits to make extensions easy and effective.

