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Topics

e XML is an acronym for eXtensible Markup
Language.
— Its purpose is to describe structured data

e XPath is a language for navigating through an
XML document.

— It's used to select specific pieces of information from
the document

e XSLT is a language for transforming XML into
something else.

— Often used to generate HTML or another XML
document.



Introduction to XML

o XML is a tagged markup language designed to
describe data: LectureNote.xml

e XML has only a couple of predefined tags
— All the rest are defined by the document designer.
— XML can be used to create languages

e XML is commonly used to:
— Define data structures.
— Define messages
— Create web pages


LectureNote.xml

Validation

e To be correct XML a set of markup needs only to be well
formed, see Well-Formed XML.

e To determine if an XML document belongs to some
document type, XML uses either:
— Document Type Definition (DTD)
— XML Schema
XML that satisfies a Schema or DTD is said to be valid.

e DTDs and Schemas define allowable tags, attributes, and
value types, and may also specify where these may
occur in the document structure.

— XML schemas are written in XML, DTDs are not.



XML Element

e Elements are building blocks for XML documents

e Element sytax:

— Elements are composed of tags, attributes, and a
body:
<tag *[attribName=“value”]>body</tag>
example:
<book author=“Prosise”>Programming .Net</book>

— All parts of the element are unicode text

— body may contain both plain text and markup, e.g.
lower level elements.

— Tags and attributes are case sensitive and user
defined.



Element Naming Rules

e XML names are composed of unicode characters
— Tag names must begin with a letter or underscore

— Other tag name characters may contain characters,
underscores, digits, hypens, and periods

— Names may not contain spaces nor start with the
string “xml” or any case variant of “xml”.

— Attribute names follow the same rules as tag names,
and are also required to be unigue within the tag in
which they are embedded.



Element Body Rules

e Element bodies may contain plain text or
markup or both.

— By plain text, we mean character strings with no
markup.

— Markup is text with embedded markup characters:
e &< >"'and”

— Elements may also contain CDATA sections, designed
to support text including large sections of markup
characters but not interpreted as markup:

o <! [CDATA[ ... ]]>
e These cannot be used to carry binary data.



Illegal Characters

e Certain characters are reserved for markup and
are illegal in names and payload text:

&lt; < less than

&gt; > greater than
&amp; & ampersand
&apos; apostrophe
&quot; " quotation mark

e We represent them in plain text with the escape
sequences shown on the left, e.g.: &lt; if we want a less
than character in payload text.



XML Structure

An XML document is defined by a standard opening
processing instruction:

— <?xml version="1.0"7?>

— Processing instructions and comments are the only XML tags
that are not closed (see next page)

The XML body starts with a single root element.
An element is text of the form:

<someTag anAttribute=“someValue”>payload text</someTag>

where the payload may be one or more child elements
or simply text or both.

Comments take the form:

<!- a comment —-->



Well-Formed XML

e XML has a few rules:
— There may be only a single root

— All tags, except for processing instructions, must be
closed:
e <myTag someAttrib="value”>...</myTag>
e <myTag someAttrib="value"/>
— Attribute values must be quoted
— XML tags are case sensitive

— All markup and payload is text with one exception:
e An element may define a CDATA section

e CDATA is not parsed, and so may contain anything except
the CDATA terminator
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CDATA

e A CDATA section has the syntax:
<!'[CDATA[ .. ]]>

e CDATA is not parsed except to look for the
terminator “]]>" so it may containing anything.

— It is not a good idea to try to store binary data in a
CDATA section because the “]]>" sequence could
appear as part of the binary data.
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XML Documents

e An XML document is well-formed XML if it
contains:
— A prolog: <?xml version="1.0"?>
— An optional link to an XSLT stylesheet

— An optional reference to a DTD or schema, used for
validation

— Optional processing instructions
— Optional comments

— A body with a single root, which may contain any
number of text sections, elements, and comments

— An optional epilogue consisting of comments and
processing instructions
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Processing Instructions

e Processing instructions are used to capture information

for XML parsers and proprietary applications.
— Syntax: <? PI-target *[attrib="value"]?>

e The most common processing instructions are:

— Document banner:
<?xml version="1.0" encoding="utf-8"?>

— XSLT style-sheet reference:
<?xml-stylesheet type="text/xsl|" href="courses.xsl"?>

e Other hypothetical instructions:
— <? robots index="no" follow="yes" ?>
— <? word document="aDoc.doc” ?>

13



Namespaces

e Namespaces are declared with special attributes and
prefixes:

<tag xmlns:prefix="uri”>body</tag>

The uri should be unique, so current style is to use a url, e.g.,
WWW.Eecs.syr.edu.

These urls need not be bound to some real site.

Attributes do not inherit the namespace of their element, so you
need to do this:
<tag xmilns:a="uri” a:myAttrib="value”>body</tag>

e Namespaces are used to distinguish different elements
that happen to have the same tag name, but are not
intended to mean the same thing.

Perhaps, they have different structures
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http://www.ecs.syr.edu/

Example

<?xml version=%"1.07"7?>

<!--— XML test case —--> /, \\
<LectureNote course=%"cse681"”> Note: we
<title>XML Example #1</title> can have
<reference>
<title>Programming Microsoft .Net</title> boﬂ”EXtand
<author> child nodes
Jeff Prosise in the
<note company=“Wintellect”></note> payload of
</author>
<publisher>Microsoft Press</publisher> an element.
<date>2002</date>
<page>608</page>
</reference>
<comment>Description of PCDATA</comment>
</LectureNote>

LectureNote.xml
Webmonkey | Reference: Special Characters
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LectureNote.xml
http://hotwired.lycos.com/webmonkey/reference/special_characters/

XML Node Structure

Lecture Note::title

reference::title

Lecture Note

reference

comment

note
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XML Parse Tree

Document >

Lecture Note

<XML comment

reference

textNode

textNode textNode textNode
”

textNode
textNode

textNode




XML Presentation

e There are several ways XML data can be
presented to a user:

— XML data island in an HTML page, interpreted by
script

— XML file interpreted by script in an HTML page
— XML island or file bound to an HTML table
— XML file bound to a GridView control

— XML styled with an XSL style sheet
e Essentially, the XSL sheet creates viewable HTML

— Read, interpreted, and modified by an application

e The .Net System.XML library provides very effective support
for this.
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XML Demonstrations

e XML Demonstration Web Pages
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xmlDemo/xmlEx0.htm

Introduction to XPath

e XPath provides a navigation facility within XML
documents

— XPath is used to extract specific information from XML

documents:
— In XSL style sheets
» <xsl:template match=xpath expression>
» <xsl:for-each select=xpath expression>
» <xsl:value-of select=xpath expression>
» <xsl:apply-templates select=xpath expression>
— In C# programs that use the XML DOM
» XmlINode.SelectSingleNode(xpath expression)
» XmlINode.SelectNodes(xpath expression)
— In Javascript code
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XPath Components

o XPath syntax contains the following components:

Steps

e A directory like syntax for defining elements and attributes at some

specified level
— [customers/customer/lastName
— [customers/customer|[ @status = current]

Descent Steps

e Steps that may occur at any level in an XML structure
— //lastName

Filters
e Elements or attributes that must be present to result in a match
e /customers/customer[country]
Predicates
e Condition that must be met to result in @ match
e /customers/customer[country="United States of America”]
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XPath Node Set Functions

e XPath provides a number of functions that
operate on sets of nodes:
— count()

e the number of nodes in a set

e /customers/customer[count(order) = 1], e.g., customers with
only one order

— position()
e position returns the position of an XML node in a set of
nodes:
e /customers/customer[position() = 1], e.q., first customer
— last()

e Returns the ordinal of the last node in a set

e /customers/customer/order[position() = last()], e.g., last
order of each customer
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XPath String Functions

e XPath has three commonly used string
functions:

— contains()
e Returns true if string in first argument contains the second
o //customer[contains(jobTitle, "chief”)]

— string-length()
e Returns integer number of characters in string
e //customer[string-length(lastName) > 3]

— substring()

o substring(str,start,length) returns substring of str starting at
character start with number of characters equal to length

e //customer[substring(city,0,3) = “Los"]
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Other XPath Functions

e XPath number functions:
— sum()
e sum(products/product/price)
e Boolean functions
— false()
— true()

— not()
e //customer[not(count(orders) = 0)]
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XPath Expressions

o XPath supports numerical, boolean, and comparison
expressions:
— create complex predicates
— //customer[count(orders) > 0 and State = “California”]

o XPath unions
— return the union of two node sets
— //books | //articles
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XPath Axes

e XPath axis specifies the direction of node
selection from the context node:
— child
e Child nodes of the context node

— parent
e Parent node of the context node

— ancestor
e All ancestors of the context node

— descendent
e All decendents of the context node

— attribute
e Attributes of the context node
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Axes Examples

e /customer/lastName
— /child::customer/child::lastName

o //firstName
— desendant::firstName

e //drive/@letter
— //drive/attribute::letter

o //file/../@name
— //file/parent::folder/@name

o //folder[parent::folder and not(child::file)]

— Subdirectories with no files
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Introduction to XSLT

XSLT is an acronym for eXtensible Stylesheet
Language — Transform.

Designed to transform an input XML parse tree
into a parse tree for the output — often XML or
HTML.

The transformations are defined as templates in
a stylesheet, with extension xsl.

.Net provides several classes to support this
operation.
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XSLT Template Processing

<xsl:template match=XPath expression>
// processing defined for the
// matching node set
</xsl:template>

Processing consists of:
— Literals that are sent directly to the output
— Templates with their results sent to the output

An XSLT stylesheet can have an arbitrary number of
templates.

Templates are processed at two points in time:

— When the transformation is first invoked.

— Whenever <xsl:apply-templates /> is encountered during
processing.
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apply-templates
<xsl:apply-templates />

The current selection is matched against all
templates in the stylesheet.

Each match executes the matching template’s
processing.

The results are sent to the output.
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for-each

e <xsl:for—-each select=XPath
expression>
// processing for selections
</xsl:for-each>

e Each element of the matching node set is
processed according to the body of the
template.

e Results are sent to the output.
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value-of Template Instruction

e <xsl:value-of select=XPath expression />

e Returns the value of the selected node

e The selection is from the context defined by the
template selection (see previous slide).
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Example

e The links, below, refer to an example of XSLT processing, executed
on a web server, to render a webpage based on contents of an XML
file:

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
Tdemo.aspx

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
TFile.xsl

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XM
LFile NoStyleLink.xml

e Other references for XSLT
— www.w3schools.com/xsl/xsl languages.asp
— http://www.zvon.org/xxl/XSLTutorial/Books/Book1/

— http://directory.google.com/Top/Computers/Data Formats/Markup Lan
qguages/XML/Style Sheets/XSL/FAQs, Help, and Tutorials/
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http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.w3schools.com/xsl/xsl_languages.asp
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

End of Presentation



