
XML, XPath, and XSLT

Jim Fawcett

CSE 681 – Software Modeling and Analysis

Fall 2007

2

Topics

• XML is an acronym for eXtensible Markup
Language.
– Its purpose is to describe structured data

• XPath is a language for navigating through an
XML document.
– It’s used to select specific pieces of information from

the document

• XSLT is a language for transforming XML into
something else.
– Often used to generate HTML or another XML

document.

3

Introduction to XML

• XML is a tagged markup language designed to
describe data: LectureNote.xml

• XML has only a couple of predefined tags

– All the rest are defined by the document designer.

– XML can be used to create languages

• XML is commonly used to:

– Define data structures.

– Define messages

– Create web pages

LectureNote.xml

4

Validation

• To be correct XML a set of markup needs only to be well
formed, see Well-Formed XML.

• To determine if an XML document belongs to some
document type, XML uses either:
– Document Type Definition (DTD)

– XML Schema

XML that satisfies a Schema or DTD is said to be valid.

• DTDs and Schemas define allowable tags, attributes, and
value types, and may also specify where these may
occur in the document structure.
– XML schemas are written in XML, DTDs are not.

5

XML Element

• Elements are building blocks for XML documents

• Element sytax:
– Elements are composed of tags, attributes, and a

body:
<tag *[attribName=“value”]>body</tag>

example:
<book author=“Prosise”>Programming .Net</book>

– All parts of the element are unicode text

– body may contain both plain text and markup, e.g.
lower level elements.

– Tags and attributes are case sensitive and user
defined.

6

Element Naming Rules

• XML names are composed of unicode characters

– Tag names must begin with a letter or underscore

– Other tag name characters may contain characters,
underscores, digits, hypens, and periods

– Names may not contain spaces nor start with the
string “xml” or any case variant of “xml”.

– Attribute names follow the same rules as tag names,
and are also required to be unique within the tag in
which they are embedded.

7

Element Body Rules

• Element bodies may contain plain text or
markup or both.

– By plain text, we mean character strings with no
markup.

– Markup is text with embedded markup characters:

• & < > ‘ and “

– Elements may also contain CDATA sections, designed
to support text including large sections of markup
characters but not interpreted as markup:

• <! [CDATA[…]]>

• These cannot be used to carry binary data.

8

Illegal Characters

• Certain characters are reserved for markup and
are illegal in names and payload text:

 < < less than

 > > greater than
 & & ampersand
 ' ‘ apostrophe
 " “ quotation mark

• We represent them in plain text with the escape
sequences shown on the left, e.g.: < if we want a less
than character in payload text.

9

XML Structure

• An XML document is defined by a standard opening
processing instruction:
– <?xml version=“1.0”?>

– Processing instructions and comments are the only XML tags
that are not closed (see next page)

• The XML body starts with a single root element.

• An element is text of the form:

<someTag anAttribute=“someValue”>payload text</someTag>

where the payload may be one or more child elements
or simply text or both.

• Comments take the form:

 <!– a comment -->

10

Well-Formed XML

• XML has a few rules:

– There may be only a single root

– All tags, except for processing instructions, must be
closed:

• <myTag someAttrib=“value”>…</myTag>

• <myTag someAttrib=“value”/>

– Attribute values must be quoted

– XML tags are case sensitive

– All markup and payload is text with one exception:

• An element may define a CDATA section

• CDATA is not parsed, and so may contain anything except
the CDATA terminator

11

CDATA

• A CDATA section has the syntax:

 <![CDATA[…]]>

• CDATA is not parsed except to look for the
terminator “]]>” so it may containing anything.

– It is not a good idea to try to store binary data in a
CDATA section because the “]]>” sequence could
appear as part of the binary data.

12

XML Documents

• An XML document is well-formed XML if it
contains:
– A prolog: <?xml version=“1.0”?>

– An optional link to an XSLT stylesheet

– An optional reference to a DTD or schema, used for
validation

– Optional processing instructions

– Optional comments

– A body with a single root, which may contain any
number of text sections, elements, and comments

– An optional epilogue consisting of comments and
processing instructions

13

Processing Instructions

• Processing instructions are used to capture information
for XML parsers and proprietary applications.

– Syntax: <? PI-target *[attrib=“value”]?>

• The most common processing instructions are:

– Document banner:
<?xml version=“1.0” encoding="utf-8"?>

– XSLT style-sheet reference:
<?xml-stylesheet type="text/xsl" href="courses.xsl"?>

• Other hypothetical instructions:

– <? robots index="no" follow="yes“ ?>

– <? word document=“aDoc.doc” ?>

14

Namespaces

• Namespaces are declared with special attributes and
prefixes:

– <tag xmlns:prefix=“uri”>body</tag>

– The uri should be unique, so current style is to use a url, e.g.,
www.ecs.syr.edu.

– These urls need not be bound to some real site.

– Attributes do not inherit the namespace of their element, so you
need to do this:
<tag xmlns:a=“uri” a:myAttrib=“value”>body</tag>

• Namespaces are used to distinguish different elements
that happen to have the same tag name, but are not
intended to mean the same thing.

– Perhaps, they have different structures

http://www.ecs.syr.edu/

15

Example

<?xml version=“1.0”?>
<!-- XML test case -->
 <LectureNote course=“cse681”>
 <title>XML Example #1</title>
 <reference>
 <title>Programming Microsoft .Net</title>
 <author>
 Jeff Prosise
 <note company=“Wintellect”></note>
 </author>
 <publisher>Microsoft Press</publisher>
 <date>2002</date>
 <page>608</page>
 </reference>
 <comment>Description of PCDATA</comment>
 </LectureNote>

LectureNote.xml
Webmonkey | Reference: Special Characters

Note: we

can have

both text and

child nodes

in the

payload of

an element.

LectureNote.xml
http://hotwired.lycos.com/webmonkey/reference/special_characters/

16

XML Node Structure

Lecture Note

title reference comment

title author publisher date page

Lecture Note::title

reference::title

note

17

XML Parse Tree

Lecture Note

title reference comment

title author publisher date page

Document

XML comment

textNode textNode

textNode textNode

note

textNode textNode textNode

A

A

18

XML Presentation

• There are several ways XML data can be
presented to a user:

– XML data island in an HTML page, interpreted by
script

– XML file interpreted by script in an HTML page

– XML island or file bound to an HTML table

– XML file bound to a GridView control

– XML styled with an XSL style sheet

• Essentially, the XSL sheet creates viewable HTML

– Read, interpreted, and modified by an application

• The .Net System.XML library provides very effective support
for this.

19

XML Demonstrations

• XML Demonstration Web Pages

xmlDemo/xmlEx0.htm

20

Introduction to XPath

• XPath provides a navigation facility within XML
documents

– XPath is used to extract specific information from XML
documents:

– In XSL style sheets

» <xsl:template match=xpath expression>

» <xsl:for-each select=xpath expression>

» <xsl:value-of select=xpath expression>

» <xsl:apply-templates select=xpath expression>

– In C# programs that use the XML DOM

» XmlNode.SelectSingleNode(xpath expression)

» XmlNode.SelectNodes(xpath expression)

– In Javascript code

21

XPath Components

• XPath syntax contains the following components:
– Steps

• A directory like syntax for defining elements and attributes at some
specified level

– /customers/customer/lastName

– /customers/customer[@status = current]

– Descent Steps
• Steps that may occur at any level in an XML structure

– //lastName

– Filters
• Elements or attributes that must be present to result in a match

• /customers/customer[country]

– Predicates
• Condition that must be met to result in a match

• /customers/customer[country=“United States of America”]

22

XPath Node Set Functions

• XPath provides a number of functions that
operate on sets of nodes:
– count()

• the number of nodes in a set

• /customers/customer[count(order) = 1], e.g., customers with
only one order

– position()
• position returns the position of an XML node in a set of

nodes:

• /customers/customer[position() = 1], e.g., first customer

– last()
• Returns the ordinal of the last node in a set

• /customers/customer/order[position() = last()], e.g., last
order of each customer

23

XPath String Functions

• XPath has three commonly used string
functions:

– contains()

• Returns true if string in first argument contains the second

• //customer[contains(jobTitle,”chief”)]

– string-length()

• Returns integer number of characters in string

• //customer[string-length(lastName) > 3]

– substring()

• substring(str,start,length) returns substring of str starting at
character start with number of characters equal to length

• //customer[substring(city,0,3) = “Los”]

24

Other XPath Functions

• XPath number functions:

– sum()

• sum(products/product/price)

• Boolean functions

– false()

– true()

– not()

• //customer[not(count(orders) = 0)]

25

XPath Expressions

• XPath supports numerical, boolean, and comparison
expressions:

– create complex predicates

– //customer[count(orders) > 0 and State = “California”]

• XPath unions

– return the union of two node sets

– //books | //articles

26

XPath Axes

• XPath axis specifies the direction of node
selection from the context node:

– child

• Child nodes of the context node

– parent

• Parent node of the context node

– ancestor

• All ancestors of the context node

– descendent

• All decendents of the context node

– attribute

• Attributes of the context node

27

Axes Examples

• /customer/lastName

– /child::customer/child::lastName

• //firstName

– desendant::firstName

• //drive/@letter

– //drive/attribute::letter

• //file/../@name

– //file/parent::folder/@name

• //folder[parent::folder and not(child::file)]

– Subdirectories with no files

28

Introduction to XSLT

• XSLT is an acronym for eXtensible Stylesheet
Language – Transform.

• Designed to transform an input XML parse tree
into a parse tree for the output – often XML or
HTML.

• The transformations are defined as templates in
a stylesheet, with extension xsl.

• .Net provides several classes to support this
operation.

29

XSLT Template Processing

• <xsl:template match=XPath expression>
 // processing defined for the
 // matching node set
</xsl:template>

• Processing consists of:
– Literals that are sent directly to the output
– Templates with their results sent to the output

• An XSLT stylesheet can have an arbitrary number of
templates.

• Templates are processed at two points in time:
– When the transformation is first invoked.
– Whenever <xsl:apply-templates /> is encountered during

processing.

30

apply-templates

• <xsl:apply-templates />

• The current selection is matched against all
templates in the stylesheet.

• Each match executes the matching template’s
processing.

• The results are sent to the output.

31

for-each

• <xsl:for-each select=XPath

expression>

 // processing for selections
</xsl:for-each>

• Each element of the matching node set is
processed according to the body of the
template.

• Results are sent to the output.

32

value-of Template Instruction

• <xsl:value-of select=XPath expression />

• Returns the value of the selected node

• The selection is from the context defined by the
template selection (see previous slide).

33

Example

• The links, below, refer to an example of XSLT processing, executed
on a web server, to render a webpage based on contents of an XML
file:

– www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
Tdemo.aspx

– www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
TFile.xsl

– www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XM
LFile_NoStyleLink.xml

• Other references for XSLT

– www.w3schools.com/xsl/xsl_languages.asp

– http://www.zvon.org/xxl/XSLTutorial/Books/Book1/

– http://directory.google.com/Top/Computers/Data_Formats/Markup_Lan
guages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.w3schools.com/xsl/xsl_languages.asp
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

End of Presentation

