XML, XPath, and XSLT

Jim Fawcett
CSE 681 — Software Modeling and Analysis
Fall 2007

Topics

e XML is an acronym for eXtensible Markup
Language.
— Its purpose is to describe structured data

e XPath is a language for navigating through an
XML document.

— It's used to select specific pieces of information from
the document

e XSLT is a language for transforming XML into
something else.

— Often used to generate HTML or another XML
document.

Introduction to XML

o XML is a tagged markup language designed to
describe data: LectureNote.xml

e XML has only a couple of predefined tags
— All the rest are defined by the document designer.
— XML can be used to create languages

e XML is commonly used to:
— Define data structures.
— Define messages
— Create web pages

LectureNote.xml

Validation

e To be correct XML a set of markup needs only to be well
formed, see Well-Formed XML.

e To determine if an XML document belongs to some
document type, XML uses either:
— Document Type Definition (DTD)
— XML Schema
XML that satisfies a Schema or DTD is said to be valid.

e DTDs and Schemas define allowable tags, attributes, and
value types, and may also specify where these may
occur in the document structure.

— XML schemas are written in XML, DTDs are not.

XML Element

e Elements are building blocks for XML documents

e Element sytax:

— Elements are composed of tags, attributes, and a
body:
<tag *[attribName=“value”]>body</tag>
example:
<book author=“Prosise”>Programming .Net</book>

— All parts of the element are unicode text

— body may contain both plain text and markup, e.g.
lower level elements.

— Tags and attributes are case sensitive and user
defined.

Element Naming Rules

e XML names are composed of unicode characters
— Tag names must begin with a letter or underscore

— Other tag name characters may contain characters,
underscores, digits, hypens, and periods

— Names may not contain spaces nor start with the
string “xml” or any case variant of “xml”.

— Attribute names follow the same rules as tag names,
and are also required to be unigue within the tag in
which they are embedded.

Element Body Rules

e Element bodies may contain plain text or
markup or both.

— By plain text, we mean character strings with no
markup.

— Markup is text with embedded markup characters:
e &< >"'and”

— Elements may also contain CDATA sections, designed
to support text including large sections of markup
characters but not interpreted as markup:

o <! [CDATA[...]]>
e These cannot be used to carry binary data.

Illegal Characters

e Certain characters are reserved for markup and
are illegal in names and payload text:

< < less than

> > greater than
& & ampersand
' apostrophe
" " quotation mark

e We represent them in plain text with the escape
sequences shown on the left, e.g.: < if we want a less
than character in payload text.

XML Structure

An XML document is defined by a standard opening
processing instruction:

— <?xml version="1.0"7?>

— Processing instructions and comments are the only XML tags
that are not closed (see next page)

The XML body starts with a single root element.
An element is text of the form:

<someTag anAttribute=“someValue”>payload text</someTag>

where the payload may be one or more child elements
or simply text or both.

Comments take the form:

<!- a comment —-->

Well-Formed XML

e XML has a few rules:
— There may be only a single root

— All tags, except for processing instructions, must be
closed:
e <myTag someAttrib="value”>...</myTag>
e <myTag someAttrib="value"/>
— Attribute values must be quoted
— XML tags are case sensitive

— All markup and payload is text with one exception:
e An element may define a CDATA section

e CDATA is not parsed, and so may contain anything except
the CDATA terminator

10

CDATA

e A CDATA section has the syntax:
<!'[CDATA[..]]>

e CDATA is not parsed except to look for the
terminator “]]>" so it may containing anything.

— It is not a good idea to try to store binary data in a
CDATA section because the “]]>" sequence could
appear as part of the binary data.

11

XML Documents

e An XML document is well-formed XML if it
contains:
— A prolog: <?xml version="1.0"?>
— An optional link to an XSLT stylesheet

— An optional reference to a DTD or schema, used for
validation

— Optional processing instructions
— Optional comments

— A body with a single root, which may contain any
number of text sections, elements, and comments

— An optional epilogue consisting of comments and
processing instructions

12

Processing Instructions

e Processing instructions are used to capture information

for XML parsers and proprietary applications.
— Syntax: <? PI-target *[attrib="value"]?>

e The most common processing instructions are:

— Document banner:
<?xml version="1.0" encoding="utf-8"?>

— XSLT style-sheet reference:
<?xml-stylesheet type="text/xsl|" href="courses.xsl"?>

e Other hypothetical instructions:
— <? robots index="no" follow="yes" ?>
— <? word document="aDoc.doc” ?>

13

Namespaces

e Namespaces are declared with special attributes and
prefixes:

<tag xmlns:prefix="uri”>body</tag>

The uri should be unique, so current style is to use a url, e.g.,
WWW.Eecs.syr.edu.

These urls need not be bound to some real site.

Attributes do not inherit the namespace of their element, so you
need to do this:
<tag xmilns:a="uri” a:myAttrib="value”>body</tag>

e Namespaces are used to distinguish different elements
that happen to have the same tag name, but are not
intended to mean the same thing.

Perhaps, they have different structures

14

http://www.ecs.syr.edu/

Example

<?xml version=%"1.07"7?>

<!--— XML test case —--> /, \\
<LectureNote course=%"cse681"”> Note: we
<title>XML Example #1</title> can have
<reference>
<title>Programming Microsoft .Net</title> boﬂ”EXtand
<author> child nodes
Jeff Prosise in the
<note company=“Wintellect”></note> payload of
</author>
<publisher>Microsoft Press</publisher> an element.
<date>2002</date>
<page>608</page>
</reference>
<comment>Description of PCDATA</comment>
</LectureNote>

LectureNote.xml
Webmonkey | Reference: Special Characters

15

LectureNote.xml
http://hotwired.lycos.com/webmonkey/reference/special_characters/

XML Node Structure

Lecture Note::title

reference::title

Lecture Note

reference

comment

note

16

XML Parse Tree

Document >

Lecture Note

<XML comment

reference

textNode

textNode textNode textNode
”

textNode
textNode

textNode

XML Presentation

e There are several ways XML data can be
presented to a user:

— XML data island in an HTML page, interpreted by
script

— XML file interpreted by script in an HTML page
— XML island or file bound to an HTML table
— XML file bound to a GridView control

— XML styled with an XSL style sheet
e Essentially, the XSL sheet creates viewable HTML

— Read, interpreted, and modified by an application

e The .Net System.XML library provides very effective support
for this.

18

XML Demonstrations

e XML Demonstration Web Pages

19

xmlDemo/xmlEx0.htm

Introduction to XPath

e XPath provides a navigation facility within XML
documents

— XPath is used to extract specific information from XML

documents:
— In XSL style sheets
» <xsl:template match=xpath expression>
» <xsl:for-each select=xpath expression>
» <xsl:value-of select=xpath expression>
» <xsl:apply-templates select=xpath expression>
— In C# programs that use the XML DOM
» XmlINode.SelectSingleNode(xpath expression)
» XmlINode.SelectNodes(xpath expression)
— In Javascript code

20

XPath Components

o XPath syntax contains the following components:

Steps

e A directory like syntax for defining elements and attributes at some

specified level
— [customers/customer/lastName
— [customers/customer|[@status = current]

Descent Steps

e Steps that may occur at any level in an XML structure
— //lastName

Filters
e Elements or attributes that must be present to result in a match
e /customers/customer[country]
Predicates
e Condition that must be met to result in @ match
e /customers/customer[country="United States of America”]

21

XPath Node Set Functions

e XPath provides a number of functions that
operate on sets of nodes:
— count()

e the number of nodes in a set

e /customers/customer[count(order) = 1], e.g., customers with
only one order

— position()
e position returns the position of an XML node in a set of
nodes:
e /customers/customer[position() = 1], e.q., first customer
— last()

e Returns the ordinal of the last node in a set

e /customers/customer/order[position() = last()], e.g., last
order of each customer

22

XPath String Functions

e XPath has three commonly used string
functions:

— contains()
e Returns true if string in first argument contains the second
o //customer[contains(jobTitle, "chief”)]

— string-length()
e Returns integer number of characters in string
e //customer[string-length(lastName) > 3]

— substring()

o substring(str,start,length) returns substring of str starting at
character start with number of characters equal to length

e //customer[substring(city,0,3) = “Los"]

23

Other XPath Functions

e XPath number functions:
— sum()
e sum(products/product/price)
e Boolean functions
— false()
— true()

— not()
e //customer[not(count(orders) = 0)]

24

XPath Expressions

o XPath supports numerical, boolean, and comparison
expressions:
— create complex predicates
— //customer[count(orders) > 0 and State = “California”]

o XPath unions
— return the union of two node sets
— //books | //articles

25

XPath Axes

e XPath axis specifies the direction of node
selection from the context node:
— child
e Child nodes of the context node

— parent
e Parent node of the context node

— ancestor
e All ancestors of the context node

— descendent
e All decendents of the context node

— attribute
e Attributes of the context node

26

Axes Examples

e /customer/lastName
— /child::customer/child::lastName

o //firstName
— desendant::firstName

e //drive/@letter
— //drive/attribute::letter

o //file/../@name
— //file/parent::folder/@name

o //folder[parent::folder and not(child::file)]

— Subdirectories with no files

27

Introduction to XSLT

XSLT is an acronym for eXtensible Stylesheet
Language — Transform.

Designed to transform an input XML parse tree
into a parse tree for the output — often XML or
HTML.

The transformations are defined as templates in
a stylesheet, with extension xsl.

.Net provides several classes to support this
operation.

28

XSLT Template Processing

<xsl:template match=XPath expression>
// processing defined for the
// matching node set
</xsl:template>

Processing consists of:
— Literals that are sent directly to the output
— Templates with their results sent to the output

An XSLT stylesheet can have an arbitrary number of
templates.

Templates are processed at two points in time:

— When the transformation is first invoked.

— Whenever <xsl:apply-templates /> is encountered during
processing.

29

apply-templates
<xsl:apply-templates />

The current selection is matched against all
templates in the stylesheet.

Each match executes the matching template’s
processing.

The results are sent to the output.

30

for-each

e <xsl:for—-each select=XPath
expression>
// processing for selections
</xsl:for-each>

e Each element of the matching node set is
processed according to the body of the
template.

e Results are sent to the output.

31

value-of Template Instruction

e <xsl:value-of select=XPath expression />

e Returns the value of the selected node

e The selection is from the context defined by the
template selection (see previous slide).

32

Example

e The links, below, refer to an example of XSLT processing, executed
on a web server, to render a webpage based on contents of an XML
file:

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
Tdemo.aspx

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSL
TFile.xsl

— www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XM
LFile NoStyleLink.xml

e Other references for XSLT
— www.w3schools.com/xsl/xsl languages.asp
— http://www.zvon.org/xxl/XSLTutorial/Books/Book1/

— http://directory.google.com/Top/Computers/Data Formats/Markup Lan
qguages/XML/Style Sheets/XSL/FAQs, Help, and Tutorials/

33

http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTdemo.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XSLTFile.xsl
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.ecs.syr.edu/faculty/fawcett/handouts/cse686/code/XSLTdemo/XMLFile_NoStyleLink.xml
http://www.w3schools.com/xsl/xsl_languages.asp
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/
http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Style_Sheets/XSL/FAQs,_Help,_and_Tutorials/

End of Presentation

